Upload mara_generator.py
Browse files- mara_generator.py +271 -0
mara_generator.py
ADDED
|
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from loguru import logger as log
|
| 4 |
+
from torch.distributions import Categorical
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessorList, TopKLogitsWarper, TopPLogitsWarper, \
|
| 6 |
+
TemperatureLogitsWarper
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class DiscreteActor(nn.Module):
|
| 10 |
+
def __init__(self, state_dim, action_dim, hidden_dim=1024):
|
| 11 |
+
super(DiscreteActor, self).__init__()
|
| 12 |
+
self.state_dim = state_dim
|
| 13 |
+
self.action_dim = action_dim
|
| 14 |
+
|
| 15 |
+
self.ln = nn.LayerNorm(state_dim)
|
| 16 |
+
self.linear1 = nn.Linear(self.state_dim, hidden_dim)
|
| 17 |
+
self.linear2 = nn.Linear(hidden_dim, int(hidden_dim / 4))
|
| 18 |
+
self.output_linear = nn.Linear(int(hidden_dim / 4), self.action_dim)
|
| 19 |
+
|
| 20 |
+
def forward(self, state):
|
| 21 |
+
state = self.ln(state)
|
| 22 |
+
x = torch.relu(self.linear1(state))
|
| 23 |
+
x = torch.relu(self.linear2(x))
|
| 24 |
+
output = torch.softmax(self.output_linear(x), dim=1)
|
| 25 |
+
return output
|
| 26 |
+
|
| 27 |
+
def sample(self, state):
|
| 28 |
+
state = state.unsqueeze(0)
|
| 29 |
+
prob = self.forward(state)
|
| 30 |
+
distribution = Categorical(torch.Tensor(prob))
|
| 31 |
+
sample_action = distribution.sample().unsqueeze(-1).detach()
|
| 32 |
+
z = (prob == 0.0).float() * 1e-8
|
| 33 |
+
logprob = torch.log(prob + z)
|
| 34 |
+
greedy_action = torch.argmax(prob, dim=-1).unsqueeze(-1) # 1d tensor
|
| 35 |
+
return sample_action, prob, logprob, greedy_action
|
| 36 |
+
|
| 37 |
+
def select_action(self, state):
|
| 38 |
+
state = state.unsqueeze(0)
|
| 39 |
+
prob = self.forward(state)
|
| 40 |
+
action = torch.argmax(prob, dim=-1).unsqueeze(-1) # 1d tensor
|
| 41 |
+
action = action.squeeze().tolist()
|
| 42 |
+
return action
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class MARAGenerator():
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
agent_path, base_model_path, state_dim=4096, hidden_dim=1024, model_device="cuda:0",
|
| 49 |
+
max_new_token=2048, topk=40, topp=0.95, temperature=0.8
|
| 50 |
+
):
|
| 51 |
+
# 文本生成模型初始化
|
| 52 |
+
self.base_model_path = base_model_path
|
| 53 |
+
self.model_device = torch.device(model_device)
|
| 54 |
+
self.base_model = AutoModelForCausalLM.from_pretrained(self.base_model_path).to(
|
| 55 |
+
self.model_device).eval().requires_grad_(False)
|
| 56 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_path)
|
| 57 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
| 58 |
+
|
| 59 |
+
self.topk = topk
|
| 60 |
+
self.topp = topp
|
| 61 |
+
self.max_new_token = max_new_token
|
| 62 |
+
self.temperature = temperature
|
| 63 |
+
|
| 64 |
+
# instantiate logits processors and wraper
|
| 65 |
+
self.logits_wraper = LogitsProcessorList(
|
| 66 |
+
[TopKLogitsWarper(self.topk), TopPLogitsWarper(top_p=self.topp),
|
| 67 |
+
TemperatureLogitsWarper(self.temperature)])
|
| 68 |
+
|
| 69 |
+
'''init agent'''
|
| 70 |
+
self.mara_agent = self.get_mara_agent(agent_path, state_dim, hidden_dim).to(self.model_device)
|
| 71 |
+
# log.info("mara_agent:{}".format(self.mara_agent))
|
| 72 |
+
|
| 73 |
+
self.instruction = "" # 输入指令
|
| 74 |
+
self.generate_ids = [] # 已生成的token
|
| 75 |
+
self.new_token_cnt = 0 # 已生成token数
|
| 76 |
+
self.curr_input_ids = None # 生成new_token的输入input_id,
|
| 77 |
+
self.curr_new_token_ids_list = None # 采样的new_token
|
| 78 |
+
self.sum_logprobs = None
|
| 79 |
+
self.curr_new_outputs_list = None # 以self.curr_input_ids+curr_new_token_id为输入的模型输出
|
| 80 |
+
self.next_new_outputs_list = None # 对应self.curr_new_outputs_list下一个token
|
| 81 |
+
self.is_new_token = True
|
| 82 |
+
self.chosen_indices = None
|
| 83 |
+
self.cand_chosen_idx = 0
|
| 84 |
+
self.last_outputs = None
|
| 85 |
+
self.attention_mask = None
|
| 86 |
+
self.position_id = None
|
| 87 |
+
|
| 88 |
+
# proxy_detail
|
| 89 |
+
self.gen_info = {"gen_token_cnt": 0, # 每个样例生成的结果长度,len(gen_token_cnt_list)=sample_cnt
|
| 90 |
+
"proxy_token_cnt": 0, # 需要经过agent进行决策的token长度,len(proxy_token_cnt_listt)=sample_cnt
|
| 91 |
+
"cand_token_dict": {}, # 每个决策位的候选token数,1<=cand_token_cnt<=topK,0表示不需要决策
|
| 92 |
+
"accept_index_dict": {} # 每个决策位的选择第几个token, accept_idx
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
def get_mara_agent(self, agent_path, state_dim, hidden_dim):
|
| 96 |
+
mara_agent = DiscreteActor(state_dim, 2, hidden_dim)
|
| 97 |
+
log.info('Begin to load mara agent model from {}'.format(agent_path))
|
| 98 |
+
try:
|
| 99 |
+
model_state_dict = torch.load(agent_path, map_location=self.model_device)
|
| 100 |
+
mara_agent.load_state_dict(model_state_dict)
|
| 101 |
+
except Exception as e:
|
| 102 |
+
log.error("load mara_agent occur error: {}".format(str(e)))
|
| 103 |
+
raise
|
| 104 |
+
return mara_agent
|
| 105 |
+
|
| 106 |
+
def get_input_text(self, instruction):
|
| 107 |
+
messages = [{"role": "user", "content": instruction}]
|
| 108 |
+
input_text = self.tokenizer.apply_chat_template(
|
| 109 |
+
messages,
|
| 110 |
+
tokenize=False,
|
| 111 |
+
add_generation_prompt=True
|
| 112 |
+
)
|
| 113 |
+
return input_text
|
| 114 |
+
|
| 115 |
+
def get_raw_output(self, instruction, do_sample=True):
|
| 116 |
+
if do_sample:
|
| 117 |
+
generation_config = {"do_sample": True, "max_new_tokens": self.max_new_token, "top_k": self.topk,
|
| 118 |
+
"top_p": self.topp, "temperature": self.temperature}
|
| 119 |
+
else:
|
| 120 |
+
generation_config = {"do_sample": False, "max_new_tokens": self.max_new_token}
|
| 121 |
+
input_text = self.get_input_text(instruction)
|
| 122 |
+
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model_device)
|
| 123 |
+
|
| 124 |
+
output_ids = self.base_model.generate(**inputs, **generation_config)[0]
|
| 125 |
+
response = self.tokenizer.decode(output_ids[len(inputs.input_ids[0]):], skip_special_tokens=True)
|
| 126 |
+
return {"answer": response}
|
| 127 |
+
|
| 128 |
+
def get_proxy_output(self, instruction):
|
| 129 |
+
input_text = self.get_input_text(instruction)
|
| 130 |
+
model_inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model_device)
|
| 131 |
+
self.new_token_cnt = 0
|
| 132 |
+
self.generate_ids = []
|
| 133 |
+
self.gen_info = {"gen_token_cnt": 0, # 每个样例生成的结果长度,len(gen_token_cnt_list)=sample_cnt
|
| 134 |
+
"mara_token_cnt": 0, # 需要经过agent进行决策的token长度,len(proxy_token_cnt_list)=sample_cnt
|
| 135 |
+
"cand_token_dict": {}, # 每个决策位的候选token数,1<=cand_token_cnt<=topK,0表示不需要决策
|
| 136 |
+
"accept_index_dict": {} # 每个决策位的选择第几个token, accept_idx
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
input_ids = model_inputs.input_ids
|
| 140 |
+
self.attention_mask = model_inputs.attention_mask
|
| 141 |
+
self.curr_input_ids = input_ids
|
| 142 |
+
self.last_outputs = self.base_model(input_ids=input_ids,
|
| 143 |
+
attention_mask=self.attention_mask,
|
| 144 |
+
output_hidden_states=True)
|
| 145 |
+
|
| 146 |
+
# 一个token一个token地进行状态转移
|
| 147 |
+
self.is_new_token = True
|
| 148 |
+
self.cand_chosen_idx = 0
|
| 149 |
+
self.position_id = None
|
| 150 |
+
end_of_generate = False
|
| 151 |
+
while not end_of_generate:
|
| 152 |
+
end_of_generate, self.chosen_indices = self.rank_topk_ouputs_serial(self.curr_input_ids, self.last_outputs)
|
| 153 |
+
self.is_new_token = False
|
| 154 |
+
if end_of_generate:
|
| 155 |
+
break
|
| 156 |
+
accept_idx = 0
|
| 157 |
+
curr_new_outputs_list = []
|
| 158 |
+
for i in range(len(self.chosen_indices)):
|
| 159 |
+
_, curr_new_outputs = self.rank_topk_ouputs_serial(self.curr_input_ids, self.last_outputs)
|
| 160 |
+
curr_new_outputs_list.append(curr_new_outputs)
|
| 161 |
+
curr_state = curr_new_outputs['hidden_states'][-1][0, -1].to(self.model_device)
|
| 162 |
+
|
| 163 |
+
action = self.mara_agent.select_action(curr_state)
|
| 164 |
+
if action == 1:
|
| 165 |
+
accept_idx = i
|
| 166 |
+
break
|
| 167 |
+
self.is_new_token = True
|
| 168 |
+
# log.info(
|
| 169 |
+
# "new_token_cnt:{}/{}, accept_idx: {}".format(self.new_token_cnt, self.max_new_token, accept_idx))
|
| 170 |
+
accept_token_id = self.chosen_indices[accept_idx]
|
| 171 |
+
self.generate_ids.append(accept_token_id)
|
| 172 |
+
self.new_token_cnt += 1
|
| 173 |
+
self.gen_info["gen_token_cnt"] += 1
|
| 174 |
+
self.gen_info["mara_token_cnt"] += 1
|
| 175 |
+
if len(self.chosen_indices) not in self.gen_info["cand_token_dict"]:
|
| 176 |
+
self.gen_info["cand_token_dict"][len(self.chosen_indices)] = 1
|
| 177 |
+
else:
|
| 178 |
+
self.gen_info["cand_token_dict"][len(self.chosen_indices)] += 1
|
| 179 |
+
if accept_idx not in self.gen_info["accept_index_dict"]:
|
| 180 |
+
self.gen_info["accept_index_dict"][accept_idx] = 1
|
| 181 |
+
else:
|
| 182 |
+
self.gen_info["accept_index_dict"][accept_idx] += 1
|
| 183 |
+
|
| 184 |
+
self.curr_input_ids = torch.cat(
|
| 185 |
+
(self.curr_input_ids, torch.LongTensor([[accept_token_id]]).to(self.model_device)), dim=-1)
|
| 186 |
+
self.last_outputs = curr_new_outputs_list[accept_idx]
|
| 187 |
+
|
| 188 |
+
if accept_token_id == self.tokenizer.eos_token_id or self.new_token_cnt >= self.max_new_token:
|
| 189 |
+
end_of_generate = True
|
| 190 |
+
completion = self.tokenizer.decode(self.generate_ids, skip_special_tokens=True)
|
| 191 |
+
return {"answer": completion, "detail": self.gen_info}
|
| 192 |
+
|
| 193 |
+
def one_step_transfer(self, pre_input_ids, past_key_values, new_token_id):
|
| 194 |
+
attention_mask = torch.ones_like(pre_input_ids)
|
| 195 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
|
| 196 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 197 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 198 |
+
position_id = position_ids[:, -1:].to(self.model_device)
|
| 199 |
+
new_token_id = new_token_id.to(self.model_device)
|
| 200 |
+
|
| 201 |
+
new_outputs = self.base_model(input_ids=new_token_id,
|
| 202 |
+
attention_mask=attention_mask.to(self.model_device),
|
| 203 |
+
position_ids=position_id,
|
| 204 |
+
past_key_values=past_key_values,
|
| 205 |
+
output_hidden_states=True)
|
| 206 |
+
new_input_ids = torch.cat((pre_input_ids, new_token_id), dim=-1)
|
| 207 |
+
return new_input_ids, new_outputs
|
| 208 |
+
|
| 209 |
+
def rank_topk_ouputs_serial(self, pre_input_ids, last_outputs):
|
| 210 |
+
if self.is_new_token:
|
| 211 |
+
end_of_generate = False
|
| 212 |
+
next_token_logits = last_outputs.logits[:, -1, :].clone() # (batch_size, vocab_size)
|
| 213 |
+
next_token_scores = nn.functional.log_softmax(next_token_logits, dim=-1) # (batch_size, vocab_size)
|
| 214 |
+
next_token_scores = self.logits_wraper(pre_input_ids, next_token_scores)
|
| 215 |
+
sorted_scores, sorted_indices = torch.sort(next_token_scores, descending=True)
|
| 216 |
+
chosen_indices = torch.masked_select(sorted_indices, sorted_scores != -float("Inf")).tolist()
|
| 217 |
+
# 当候选token数只有1个且不为终止eos_token_id时直接一步转移
|
| 218 |
+
while len(chosen_indices) == 1:
|
| 219 |
+
self.new_token_cnt += 1
|
| 220 |
+
self.gen_info["gen_token_cnt"] += 1
|
| 221 |
+
self.generate_ids.append(chosen_indices[0])
|
| 222 |
+
if chosen_indices[0] == self.tokenizer.eos_token_id or self.new_token_cnt >= self.max_new_token:
|
| 223 |
+
end_of_generate = True
|
| 224 |
+
return end_of_generate, None
|
| 225 |
+
else:
|
| 226 |
+
pre_input_ids, last_outputs = self.one_step_transfer(pre_input_ids,
|
| 227 |
+
past_key_values=last_outputs.past_key_values,
|
| 228 |
+
new_token_id=torch.LongTensor(
|
| 229 |
+
[[chosen_indices[0]]]))
|
| 230 |
+
self.curr_input_ids = pre_input_ids
|
| 231 |
+
|
| 232 |
+
next_token_logits = last_outputs.logits[:, -1, :].clone() # (batch_size, vocab_size)
|
| 233 |
+
next_token_scores = nn.functional.log_softmax(next_token_logits, dim=-1) # (batch_size, vocab_size)
|
| 234 |
+
next_token_scores = self.logits_wraper(pre_input_ids, next_token_scores)
|
| 235 |
+
sorted_scores, sorted_indices = torch.sort(next_token_scores, descending=True)
|
| 236 |
+
chosen_indices = torch.masked_select(sorted_indices, sorted_scores != -float("Inf")).tolist()
|
| 237 |
+
|
| 238 |
+
attention_mask = torch.ones_like(pre_input_ids)
|
| 239 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
|
| 240 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 241 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 242 |
+
position_id = position_ids[:, -1:].to(self.model_device)
|
| 243 |
+
# log.info("len(chosen_indices):{}".format(len(chosen_indices)))
|
| 244 |
+
self.chosen_indices = chosen_indices
|
| 245 |
+
self.cand_chosen_idx = 0
|
| 246 |
+
self.attention_mask = attention_mask
|
| 247 |
+
self.position_id = position_id
|
| 248 |
+
self.last_outputs = last_outputs
|
| 249 |
+
return end_of_generate, chosen_indices
|
| 250 |
+
else:
|
| 251 |
+
new_token_id = torch.LongTensor([[self.chosen_indices[self.cand_chosen_idx]]])
|
| 252 |
+
curr_next_output = self.base_model(input_ids=new_token_id.to(self.model_device),
|
| 253 |
+
attention_mask=self.attention_mask.to(self.model_device),
|
| 254 |
+
position_ids=self.position_id.to(self.model_device),
|
| 255 |
+
past_key_values=self.last_outputs.past_key_values,
|
| 256 |
+
output_hidden_states=True)
|
| 257 |
+
self.cand_chosen_idx += 1
|
| 258 |
+
return False, curr_next_output
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
if __name__ == "__main__":
|
| 262 |
+
agent_path = "../proxy_rlhf/train_result/multi_reward/mistral_v3_2_1/run2/trained_model/actor_11000.pth"
|
| 263 |
+
base_model_path = "/mnt/public/model/huggingface/Mistral-7B-Instruct-v0.3"
|
| 264 |
+
proxy_generator = MARAGenerator(agent_path, base_model_path)
|
| 265 |
+
instruction = "Please introduce yourself."
|
| 266 |
+
raw_result = proxy_generator.get_raw_output(instruction, do_sample=False)
|
| 267 |
+
print("base model answer: ")
|
| 268 |
+
print(raw_result["answer"])
|
| 269 |
+
proxy_result = proxy_generator.get_proxy_output(instruction)
|
| 270 |
+
print("mara agent align answer: ")
|
| 271 |
+
print(proxy_result["answer"])
|