File size: 12,701 Bytes
7cdb0ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
"""
Sequence Prediction Evaluation with QwenImageEditPlusPipeline / Flux2KleinPipeline.
Evaluates the model's ability to predict the next number in a sequence
by generating images and extracting answers via OCR.
"""
import json
import re
from pathlib import Path
from dataclasses import dataclass, field
from enum import Enum
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
class ModelType(str, Enum):
QWEN_IMAGE_EDIT = "qwen"
FLUX2_KLEIN = "flux2-klein"
@dataclass
class EvalConfig:
"""Evaluation configuration."""
dataset_dir: str = "sequence_dataset"
output_dir: str = "eval_results"
# Model selection
model_type: ModelType = ModelType.QWEN_IMAGE_EDIT
model_id: str = "" # Auto-set based on model_type if empty
# Prompts
prompt: str = (
"Based on the number patterns shown in the previous images, "
"fill in the missing number in the empty cell of the last image."
)
negative_prompt: str = ""
# Generation params
num_inference_steps: int = 5
guidance_scale: float = 1.0
true_cfg_scale: float = 4.0 # For Qwen
height: int = 210
width: int = 750
seed: int = 42
device: str = "cuda"
dtype: torch.dtype = field(default_factory=lambda: torch.bfloat16)
def __post_init__(self):
"""Set default model_id based on model_type."""
if not self.model_id:
if self.model_type == ModelType.QWEN_IMAGE_EDIT:
self.model_id = "Qwen/Qwen-Image-Edit-2509"
elif self.model_type == ModelType.FLUX2_KLEIN:
self.model_id = "black-forest-labs/FLUX.2-klein-9B"
class OCRExtractor:
"""Extract numbers from grid images using OCR."""
def __init__(self, backend: str = "easyocr"):
"""
Args:
backend: OCR backend ("easyocr" or "pytesseract").
"""
self.backend = backend
if backend == "easyocr":
import easyocr
self.reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
elif backend == "pytesseract":
import pytesseract
self.pytesseract = pytesseract
else:
raise ValueError(f"Unknown backend: {backend}")
def extract_last_number(self, image: Image.Image) -> int | None:
"""
Extract the last (rightmost) number from a grid image.
Args:
image: PIL Image of the number grid.
Returns:
Extracted number or None if extraction fails.
"""
w, h = image.size
cell_crop = image.crop((w * 3 // 4, 0, w, h))
cell_array = np.array(cell_crop)
if self.backend == "easyocr":
results = self.reader.readtext(cell_array)
for _, text, conf in results:
digits = re.findall(r'-?\d+', text)
if digits:
return int(digits[0])
elif self.backend == "pytesseract":
text = self.pytesseract.image_to_string(
cell_crop, config='--psm 7 -c tessedit_char_whitelist=0123456789-'
)
digits = re.findall(r'-?\d+', text)
if digits:
return int(digits[0])
return None
def extract_all_numbers(self, image: Image.Image, num_cells: int = 4) -> list[int | None]:
"""Extract all numbers from a grid image."""
w, h = image.size
cell_width = w // num_cells
numbers = []
for i in range(num_cells):
cell_crop = image.crop((i * cell_width, 0, (i + 1) * cell_width, h))
cell_array = np.array(cell_crop)
if self.backend == "easyocr":
results = self.reader.readtext(cell_array)
num = None
for _, text, conf in results:
digits = re.findall(r'-?\d+', text)
if digits:
num = int(digits[0])
break
numbers.append(num)
elif self.backend == "pytesseract":
text = self.pytesseract.image_to_string(
cell_crop, config='--psm 7 -c tessedit_char_whitelist=0123456789-'
)
digits = re.findall(r'-?\d+', text)
numbers.append(int(digits[0]) if digits else None)
return numbers
class SequenceEvaluator:
"""Evaluator for sequence prediction task."""
def __init__(self, config: EvalConfig):
self.config = config
self.output_dir = Path(config.output_dir)
self.output_dir.mkdir(parents=True, exist_ok=True)
# Load pipeline based on model type
self.pipeline = self._load_pipeline()
# Initialize OCR
self.ocr = OCRExtractor(backend="easyocr")
def _load_pipeline(self):
"""Load pipeline based on model type."""
if self.config.model_type == ModelType.QWEN_IMAGE_EDIT:
return self._load_qwen_pipeline()
elif self.config.model_type == ModelType.FLUX2_KLEIN:
return self._load_flux2_klein_pipeline()
else:
raise ValueError(f"Unknown model type: {self.config.model_type}")
def _load_qwen_pipeline(self):
"""Load QwenImageEditPlusPipeline."""
from diffusers import QwenImageEditPlusPipeline
pipeline = QwenImageEditPlusPipeline.from_pretrained(
self.config.model_id,
torch_dtype=self.config.dtype,
)
pipeline.to(self.config.device)
pipeline.set_progress_bar_config(disable=True)
return pipeline
def _load_flux2_klein_pipeline(self):
"""Load Flux2KleinPipeline."""
from diffusers import Flux2KleinPipeline
pipeline = Flux2KleinPipeline.from_pretrained(
self.config.model_id,
torch_dtype=self.config.dtype,
)
pipeline.enable_model_cpu_offload()
pipeline.set_progress_bar_config(disable=True)
return pipeline
def _load_images(self, image_paths: list[str], image_dir: Path) -> list[Image.Image]:
"""Load images from paths."""
return [Image.open(image_dir / p).convert("RGB") for p in image_paths]
def predict(self, images: list[Image.Image]) -> Image.Image:
"""
Generate prediction image given input images.
Args:
images: List of input images (context + query).
Returns:
Generated image with predicted number.
"""
generator = torch.Generator(device=self.config.device).manual_seed(self.config.seed)
if self.config.model_type == ModelType.QWEN_IMAGE_EDIT:
inputs = {
"image": images,
"prompt": self.config.prompt,
"generator": generator,
"true_cfg_scale": self.config.true_cfg_scale,
"negative_prompt": self.config.negative_prompt,
"num_inference_steps": self.config.num_inference_steps,
}
elif self.config.model_type == ModelType.FLUX2_KLEIN:
# Flux2Klein uses image parameter for multi-image editing
inputs = {
"image": images,
"prompt": self.config.prompt,
"generator": generator,
"guidance_scale": self.config.guidance_scale,
"num_inference_steps": self.config.num_inference_steps,
"height": self.config.height,
"width": self.config.width,
}
with torch.inference_mode():
output = self.pipeline(**inputs)
return output.images[0]
def evaluate_sample(self, sample: dict, image_dir: Path) -> dict:
"""
Evaluate a single sample.
Args:
sample: Sample metadata dict.
image_dir: Directory containing images.
Returns:
Evaluation result dict.
"""
# Load input images (all available in test set)
images = self._load_images(sample["images"], image_dir)
# Generate prediction
pred_image = self.predict(images)
# Save prediction image
pred_path = self.output_dir / f"{sample['id']:05d}_pred.png"
pred_image.save(pred_path)
# Extract predicted number via OCR
pred_number = self.ocr.extract_last_number(pred_image)
# Get ground truth
gt_number = sample["answer"]
# Check correctness
correct = pred_number == gt_number
return {
"id": sample["id"],
"seq_type": sample["seq_type"],
"gt_answer": gt_number,
"pred_answer": pred_number,
"correct": correct,
"pred_image": str(pred_path),
}
def evaluate(self, split: str = "test") -> dict:
"""
Evaluate on entire dataset split.
Args:
split: Dataset split ("train" or "test").
Returns:
Evaluation results summary.
"""
dataset_dir = Path(self.config.dataset_dir)
# Load metadata
with open(dataset_dir / f"{split}.json") as f:
samples = json.load(f)
image_dir = dataset_dir / split / "images"
results = []
for sample in tqdm(samples, desc=f"Evaluating {split}"):
result = self.evaluate_sample(sample, image_dir)
results.append(result)
# Compute metrics
total = len(results)
correct = sum(r["correct"] for r in results)
accuracy = correct / total if total > 0 else 0.0
# Per-type accuracy
type_stats = {}
for r in results:
seq_type = r["seq_type"]
if seq_type not in type_stats:
type_stats[seq_type] = {"correct": 0, "total": 0}
type_stats[seq_type]["total"] += 1
if r["correct"]:
type_stats[seq_type]["correct"] += 1
type_accuracy = {
k: v["correct"] / v["total"] for k, v in type_stats.items()
}
summary = {
"split": split,
"model_type": self.config.model_type.value,
"model_id": self.config.model_id,
"total": total,
"correct": correct,
"accuracy": accuracy,
"type_accuracy": type_accuracy,
"results": results,
}
# Save results
with open(self.output_dir / f"{split}_results.json", "w") as f:
json.dump(summary, f, indent=2)
return summary
def main():
"""Run evaluation."""
import argparse
parser = argparse.ArgumentParser(description="Sequence Prediction Evaluation")
parser.add_argument("--model", type=str, default="flux2-klein",
choices=["qwen", "flux2-klein"],
help="Model type to use")
parser.add_argument("--model-id", type=str, default="",
help="Custom model ID (optional)")
parser.add_argument("--dataset-dir", type=str, default="sequence_dataset",
help="Dataset directory")
parser.add_argument("--output-dir", type=str, default="eval_results",
help="Output directory")
parser.add_argument("--steps", type=int, default=50,
help="Number of inference steps")
parser.add_argument("--seed", type=int, default=42,
help="Random seed")
args = parser.parse_args()
config = EvalConfig(
dataset_dir=args.dataset_dir,
output_dir=args.output_dir,
model_type=ModelType(args.model),
model_id=args.model_id,
num_inference_steps=args.steps,
seed=args.seed,
)
print(f"Model: {config.model_type.value} ({config.model_id})")
evaluator = SequenceEvaluator(config)
results = evaluator.evaluate("test")
print(f"\n{'='*50}")
print(f"Evaluation Results ({config.model_type.value})")
print(f"{'='*50}")
print(f"Total samples: {results['total']}")
print(f"Correct: {results['correct']}")
print(f"Accuracy: {results['accuracy']:.2%}")
print(f"\nPer-type accuracy:")
for seq_type, acc in sorted(results["type_accuracy"].items()):
print(f" {seq_type}: {acc:.2%}")
if __name__ == "__main__":
main() |