""" Maze Video Dataset Generator — generates maze puzzle images and solution videos with checkpoint/resume support, train/test splitting, and JSONL metadata. Includes an ``eval`` subcommand that takes a directory of result videos, extracts the last frame from each, parses the red path, and verifies it against the ground-truth maze text files. Usage: # Generate python maze_video_gen.py generate --output-dir maze --sizes 8 16 32 \ --num-per-size 100 500 1000 --min-path-ratio 0.3 \ --n-start 5 --m-end 5 --frames 50 --fps 10 --seed 42 # Evaluate result videos python maze_video_gen.py eval result_videos/ --text-dir maze/texts # Verify a pre-extracted JSON python maze_video_gen.py verify results.json --text-dir maze/texts """ import json import csv import hashlib import random import re import argparse from dataclasses import dataclass, asdict from pathlib import Path from typing import Dict, List, Optional import cv2 import numpy as np from tqdm import tqdm from maze_processor import MazeProcessor # ==================== Checkpoint Management ==================== @dataclass class GenerationState: """Tracks generation progress for checkpoint/resume.""" params_hash: str size_progress: Dict[int, int] seen_fingerprints: List[str] all_samples: List[Dict] completed: bool = False def to_dict(self) -> Dict: return asdict(self) @classmethod def from_dict(cls, d: Dict) -> "GenerationState": return cls(**d) def _params_hash(params: Dict) -> str: """Deterministic hash of generation parameters (excluding output_dir).""" key = {k: v for k, v in params.items() if k != "output_dir"} return hashlib.md5(json.dumps(key, sort_keys=True).encode()).hexdigest()[:12] def load_checkpoint(output_dir: Path, params: Dict) -> Optional[GenerationState]: """Load checkpoint if it exists and parameters match.""" meta = output_dir / "metadata.json" if not meta.exists(): return None with open(meta) as f: data = json.load(f) state = GenerationState.from_dict(data["state"]) expected = _params_hash(params) if state.params_hash != expected: print(f"⚠️ Parameters changed ({state.params_hash} → {expected}), starting fresh") return None if state.completed: print("✓ Generation already completed") return state done = sum(state.size_progress.values()) print(f"✓ Resuming from checkpoint: {done} mazes generated") return state def save_checkpoint(output_dir: Path, state: GenerationState, params: Dict): """Atomically write checkpoint to metadata.json.""" meta = output_dir / "metadata.json" tmp = meta.with_suffix(".tmp") with open(tmp, "w") as f: json.dump({"params": params, "state": state.to_dict()}, f, indent=2) tmp.rename(meta) # ==================== Video I/O ==================== def save_video_cv2(frames: list, path: str, fps: int = 10): """Save list of PIL Images as an mp4 video.""" first = np.array(frames[0]) h, w = first.shape[:2] writer = cv2.VideoWriter( str(path), cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h) ) for frame in frames: writer.write(cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)) writer.release() def extract_last_frame(video_path: str) -> Optional[np.ndarray]: """ Extract the last frame from a video file as an RGB numpy array. Returns: (H, W, 3) uint8 RGB array, or None on failure. """ cap = cv2.VideoCapture(str(video_path)) if not cap.isOpened(): return None total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) if total > 0: cap.set(cv2.CAP_PROP_POS_FRAMES, total - 1) ret, frame = cap.read() cap.release() if not ret or frame is None: return None return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # ==================== Normalisation Helpers ==================== def _normalise_list(val, sizes, name="parameter"): """Broadcast a single int to a list, or validate list length.""" if isinstance(val, int): return [val] * len(sizes) if len(val) != len(sizes): raise ValueError(f"{name} length ({len(val)}) != sizes length ({len(sizes)})") return list(val) # ==================== Core Dataset Generation ==================== def generate_dataset( output_dir: str = "maze", sizes: List[int] = [8, 16, 32], num_per_size: list = [100, 500, 1000], min_path_ratio: float = 0.3, img_size: int = 1024, prompt: str = "Draw a continuous red line from the yellow dot to the blue dot, avoiding all walls.", train_ratio: float = 0.9, n_start: int = 5, m_end: int = 5, frames: Optional[int] = None, fps: int = 10, seed: int = 42, checkpoint_interval: int = 50, ): """ Generate maze video dataset with checkpoint/resume support. The *frames* parameter controls content frames per video: - None → one content frame per path step (variable length) - N > 0 → exactly N content frames (slow-mo / fast-fwd as needed) Directory layout:: output_dir/ images/ — puzzle PNG (no solution line) videos/ — solution MP4 (progressive red line) texts/ — maze text files (bitmask format) train.jsonl / test.jsonl train.csv / test.csv path.json — UDRL answer key metadata.json — checkpoint state """ params = { "sizes": sizes, "num_per_size": num_per_size, "min_path_ratio": min_path_ratio, "img_size": img_size, "prompt": prompt, "train_ratio": train_ratio, "n_start": n_start, "m_end": m_end, "frames": frames, "fps": fps, "seed": seed, } out = Path(output_dir) img_dir = out / "images" vid_dir = out / "videos" txt_dir = out / "texts" for d in (img_dir, vid_dir, txt_dir): d.mkdir(parents=True, exist_ok=True) state = load_checkpoint(out, params) if state and state.completed: return num_list = _normalise_list( num_per_size[0] if len(num_per_size) == 1 else num_per_size, sizes, "num_per_size", ) max_puzzles = max(num_list) num_w = len(str(max_puzzles)) proc = MazeProcessor(img_size=img_size) if state is None: random.seed(seed) state = GenerationState( params_hash=_params_hash(params), size_progress={sz: 0 for sz in sizes}, seen_fingerprints=[], all_samples=[], ) print(f"Starting fresh generation: sizes={sizes}, counts={num_list}") print(f" frames={'auto (1 per step)' if frames is None else frames}, " f"n_start={n_start}, m_end={m_end}, fps={fps}") else: random.seed(seed) for _ in range(sum(state.size_progress.values()) * 10): random.random() seen = set(state.seen_fingerprints) all_samples = list(state.all_samples) progress = {int(k): v for k, v in state.size_progress.items()} since_ckpt = 0 total_target = sum(num_list) total_done = sum(progress.values()) with tqdm(total=total_target, initial=total_done, desc="Total", unit="maze") as pbar: for maze_size, target in zip(sizes, num_list): generated = progress.get(maze_size, 0) if generated >= target: continue min_len = max(1, int(maze_size * maze_size * min_path_ratio)) max_attempts = (target - generated) * 20 with tqdm( total=target, initial=generated, desc=f"Size {maze_size:3d}", unit="maze", leave=False, ) as pbar_sz: for _ in range(max_attempts): if generated >= target: break try: grid, start, end, path = proc.generate( maze_size, min_path_len=min_len ) except RuntimeError: continue fp = proc.fingerprint(grid, start, end) if fp in seen: continue seen.add(fp) idx = generated base = f"size{maze_size}_{idx:0{num_w}d}" img_name = f"{base}.png" vid_name = f"{base}.mp4" txt_name = f"{base}.txt" puzzle_img = proc.render(grid, start, end) puzzle_img.save(str(img_dir / img_name)) vid_frames = proc.generate_video_frames( grid, start, end, path, n_start=n_start, m_end=m_end, frames=frames, ) save_video_cv2(vid_frames, str(vid_dir / vid_name), fps=fps) proc.save_text(str(txt_dir / txt_name), grid, start, end) udrl = proc.path_to_udrl(path) all_samples.append({ "prompt": prompt, "image": img_name, "video": vid_name, "text": txt_name, "maze_size": maze_size, "start": list(start), "end": list(end), "path_udrl": udrl, "path_length": len(path), "frame_count": len(vid_frames), }) generated += 1 progress[maze_size] = generated since_ckpt += 1 pbar_sz.update(1) pbar.update(1) if since_ckpt >= checkpoint_interval: state.size_progress = progress state.seen_fingerprints = list(seen) state.all_samples = all_samples save_checkpoint(out, state, params) since_ckpt = 0 tqdm.write( f"Size {maze_size}: {generated} mazes, " f"{sum(1 for s in all_samples if s['maze_size'] == maze_size)} samples" ) # ==================== Final outputs ==================== path_answers = {s["image"]: s["path_udrl"] for s in all_samples} with open(out / "path.json", "w") as f: json.dump(dict(sorted(path_answers.items())), f, indent=4) random.seed(seed + 1) random.shuffle(all_samples) split = int(len(all_samples) * train_ratio) def _write_jsonl(samples, path): with open(path, "w") as f: for s in samples: f.write(json.dumps(s) + "\n") _write_jsonl(all_samples[:split], out / "train.jsonl") _write_jsonl(all_samples[split:], out / "test.jsonl") for name, samples in [("train", all_samples[:split]), ("test", all_samples[split:])]: with open(out / f"{name}.csv", "w", newline="", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow(["input_image", "video", "prompt"]) for s in samples: writer.writerow([ f"images/{s['image']}", f"videos/{s['video']}", s["prompt"] ]) state.size_progress = progress state.seen_fingerprints = list(seen) state.all_samples = all_samples state.completed = True save_checkpoint(out, state, params) print(f"\n✓ Dataset complete: {out}/") print(f" Sizes: {sizes}") print(f" Mazes: {len(all_samples)}") print(f" Train: {split}, Test: {len(all_samples) - split}") lengths = [s["path_length"] for s in all_samples] fcounts = [s["frame_count"] for s in all_samples] print(f" Path lengths: avg={np.mean(lengths):.1f}, " f"min={min(lengths)}, max={max(lengths)}") print(f" Frame counts: avg={np.mean(fcounts):.1f}, " f"min={min(fcounts)}, max={max(fcounts)}") # ==================== Eval: Video → Last Frame → Verify ==================== def eval_videos( video_dir: str, text_dir: str, output_json: Optional[str] = None, gt_json: Optional[str] = None, ): """ Evaluate a directory of result videos against ground-truth mazes. Pipeline per video: 1. Extract last frame from .mp4 2. Detect red path via pixel analysis 3. Convert to UDRL action string 4. Verify against maze .txt (wall-respecting walk from start to end) Matching convention: Video ``.mp4`` → Text ``.txt`` in *text_dir*. Common stems: ``size8_000``, ``size16_042``, etc. Args: video_dir: Directory containing result .mp4 files. text_dir: Directory containing ground-truth maze .txt files. output_json: Path to save extracted paths as JSON (default: video_dir/0_result.json). gt_json: Optional ground-truth answer JSON for accuracy by path length. """ proc = MazeProcessor() vid_root = Path(video_dir) txt_root = Path(text_dir) if output_json is None: output_json = str(vid_root / "0_result.json") # Collect videos videos = sorted( vid_root.glob("*.mp4"), key=lambda p: [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", p.stem)], ) if not videos: print(f"No .mp4 files found in {vid_root}") return print(f"Found {len(videos)} result videos in {vid_root}") print(f"Text dir: {txt_root}") # --- Phase 1: Extract paths from last frames --- extracted: Dict[str, str] = {} missing_txt = 0 missing_frame = 0 for vpath in tqdm(videos, desc="Extracting paths"): stem = vpath.stem # e.g. "size8_000" txt_path = txt_root / f"{stem}.txt" if not txt_path.exists(): missing_txt += 1 continue maze = proc.load_text(str(txt_path)) if maze is None: missing_txt += 1 continue last_frame = extract_last_frame(str(vpath)) if last_frame is None: missing_frame += 1 continue udrl = proc.extract_path_from_pixels( last_frame, grid_raw=maze["grid_raw"], size=maze["size"], start=maze["start"], ) extracted[f"{stem}.png"] = udrl # keyed by image name for consistency # Save extracted paths with open(output_json, "w", encoding="utf-8") as f: json.dump(extracted, f, indent=4) print(f"\nExtracted paths saved to: {output_json}") # --- Phase 2: Verify --- correct = 0 total_valid = 0 correctly_solved: List[Dict] = [] for name, udrl in extracted.items(): stem = name.replace(".png", "") txt_path = txt_root / f"{stem}.txt" maze = proc.load_text(str(txt_path)) if maze is None: continue total_valid += 1 if proc.verify_path(maze["grid"], maze["start"], maze["end"], udrl): correct += 1 correctly_solved.append({"name": name, "length": len(udrl)}) acc = (correct / total_valid * 100) if total_valid else 0 print(f"\n{'=' * 50}") print("Evaluation Summary") print(f"{'=' * 50}") print(f"Total Videos : {len(videos)}") print(f"Missing .txt : {missing_txt}") print(f"Failed Frame Read : {missing_frame}") print(f"Evaluated : {total_valid}") print(f"Correctly Solved : {correct}") print(f"Accuracy : {acc:.2f}%") print(f"{'-' * 50}") # Breakdown by maze size size_stats: Dict[int, Dict[str, int]] = {} for name, udrl in extracted.items(): stem = name.replace(".png", "") txt_path = txt_root / f"{stem}.txt" maze = proc.load_text(str(txt_path)) if maze is None: continue sz = maze["size"] if sz not in size_stats: size_stats[sz] = {"total": 0, "correct": 0} size_stats[sz]["total"] += 1 if proc.verify_path(maze["grid"], maze["start"], maze["end"], udrl): size_stats[sz]["correct"] += 1 if size_stats: print("\nAccuracy by maze size:") for sz in sorted(size_stats): s = size_stats[sz] sz_acc = s["correct"] / s["total"] * 100 if s["total"] else 0 print(f" Size {sz:3d}: {s['correct']:4d}/{s['total']:4d} ({sz_acc:.2f}%)") # Top longest correct correctly_solved.sort(key=lambda x: x["length"], reverse=True) if correctly_solved: print(f"\nTop 3 Longest Correct Paths:") for i, item in enumerate(correctly_solved[:3]): print(f" {i+1}. {item['name']} (length: {item['length']})") # Optional: compare with ground-truth JSON for path-length-binned accuracy if gt_json: _compare_with_gt(extracted, gt_json, txt_root, proc) print(f"{'=' * 50}") def _compare_with_gt( extracted: Dict[str, str], gt_json_path: str, txt_root: Path, proc: MazeProcessor, ): """Print accuracy binned by ground-truth path length.""" try: with open(gt_json_path) as f: gt = json.load(f) except Exception: print(f" Warning: could not load ground-truth JSON: {gt_json_path}") return bins: Dict[str, Dict[str, int]] = {} # "10-19" -> {total, correct} for name, pred_udrl in extracted.items(): if name not in gt: continue gt_udrl = gt[name] gt_len = len(gt_udrl) # Bin by path length (decades) lo = (gt_len // 10) * 10 hi = lo + 9 label = f"{lo:3d}-{hi:3d}" if label not in bins: bins[label] = {"total": 0, "correct": 0} bins[label]["total"] += 1 stem = name.replace(".png", "") maze = proc.load_text(str(txt_root / f"{stem}.txt")) if maze and proc.verify_path(maze["grid"], maze["start"], maze["end"], pred_udrl): bins[label]["correct"] += 1 if bins: print("\nAccuracy by GT path length:") for label in sorted(bins): b = bins[label] b_acc = b["correct"] / b["total"] * 100 if b["total"] else 0 print(f" Length {label}: {b['correct']:4d}/{b['total']:4d} ({b_acc:.2f}%)") # ==================== Verify: Pre-extracted JSON ==================== def verify_results(json_file: str, text_dir: str): """ Verify pre-extracted UDRL paths (from a JSON file) against maze .txt files. Args: json_file: Path to JSON with {name: udrl_string} predictions. text_dir: Directory containing maze .txt files. """ proc = MazeProcessor() json_path = Path(json_file) txt_root = Path(text_dir) with open(json_path) as f: solutions = json.load(f) correct = skipped = valid = 0 for name, udrl in solutions.items(): clean = name.replace(".png", "") txt_path = txt_root / f"{clean}.txt" maze = proc.load_text(str(txt_path)) if maze is None: skipped += 1 continue valid += 1 if proc.verify_path(maze["grid"], maze["start"], maze["end"], udrl): correct += 1 acc = (correct / valid * 100) if valid else 0 print(f"\n{'='*40}") print(f"Verification: {correct}/{valid} correct ({acc:.2f}%)") if skipped: print(f"Skipped: {skipped}") print(f"{'='*40}") # ==================== CLI ==================== def parse_args(): p = argparse.ArgumentParser( description="Maze video dataset: generate, eval, verify" ) sub = p.add_subparsers(dest="command", help="Sub-command") # --- generate --- gen = sub.add_parser("generate", help="Generate dataset") gen.add_argument("--output-dir", type=str, default="maze") gen.add_argument("--sizes", type=int, nargs="+", default=[8, 16, 24, 32]) gen.add_argument("--num-per-size", type=int, nargs="+", default=[100, 500, 1000, 2000]) gen.add_argument("--min-path-ratio", type=float, default=0.3, help="Min path length as fraction of size²") gen.add_argument("--img-size", type=int, default=1024) gen.add_argument("--prompt", type=str, default="Draw a continuous red line from the yellow dot " "to the blue dot, avoiding all walls.") gen.add_argument("--train-ratio", type=float, default=0.9) gen.add_argument("--n-start", type=int, default=2, help="Hold frames at video start (blank puzzle)") gen.add_argument("--m-end", type=int, default=3, help="Hold frames at video end (completed solution)") gen.add_argument("--frames", type=int, default=None, help="Content frames per video (None=auto 1 per step)") gen.add_argument("--fps", type=int, default=10) gen.add_argument("--seed", type=int, default=42) gen.add_argument("--checkpoint-interval", type=int, default=50) # --- eval --- ev = sub.add_parser("eval", help="Evaluate result videos (last frame → extract → verify)") ev.add_argument("video_dir", type=str, help="Directory containing result .mp4 files") ev.add_argument("--text-dir", type=str, required=True, help="Directory with ground-truth maze .txt files") ev.add_argument("--output-json", type=str, default=None, help="Output JSON for extracted paths (default: video_dir/0_result.json)") ev.add_argument("--gt-json", type=str, default=None, help="Optional ground-truth path.json for length-binned accuracy") # --- verify --- ver = sub.add_parser("verify", help="Verify a pre-extracted JSON of UDRL paths") ver.add_argument("json_file", type=str) ver.add_argument("--text-dir", type=str, required=True, help="Directory with maze .txt files") return p.parse_args() if __name__ == "__main__": args = parse_args() if args.command == "generate": kwargs = {k: v for k, v in vars(args).items() if k != "command"} generate_dataset(**kwargs) elif args.command == "eval": eval_videos( video_dir=args.video_dir, text_dir=args.text_dir, output_json=args.output_json, gt_json=args.gt_json, ) elif args.command == "verify": verify_results(args.json_file, args.text_dir) else: print("Usage: python maze_video_gen.py {generate|eval|verify} [options]") print(" python maze_video_gen.py generate --help") print(" python maze_video_gen.py eval --help") print(" python maze_video_gen.py verify --help")