""" Sequence Prediction Dataset Generator. Generates image pairs for sequence prediction tasks with various mathematical sequences (arithmetic, geometric, fibonacci, etc.) """ import json import random from pathlib import Path from typing import Callable import matplotlib.pyplot as plt import matplotlib.patches as patches # ============== Sequence Generators ============== def arithmetic_seq(start: int, diff: int, length: int = 4) -> list[int]: """Arithmetic sequence: a, a+d, a+2d, ...""" return [start + i * diff for i in range(length)] def geometric_seq(start: int, ratio: int, length: int = 4) -> list[int]: """Geometric sequence: a, a*r, a*r^2, ...""" return [start * (ratio ** i) for i in range(length)] def square_seq(start: int, length: int = 4) -> list[int]: """Square numbers: n^2, (n+1)^2, ...""" return [(start + i) ** 2 for i in range(length)] def cube_seq(start: int, length: int = 4) -> list[int]: """Cube numbers: n^3, (n+1)^3, ...""" return [(start + i) ** 3 for i in range(length)] def triangular_seq(start: int, length: int = 4) -> list[int]: """Triangular numbers: n(n+1)/2""" return [(start + i) * (start + i + 1) // 2 for i in range(length)] def fibonacci_like_seq(a: int, b: int, length: int = 4) -> list[int]: """Fibonacci-like: a, b, a+b, a+2b, ...""" seq = [a, b] for _ in range(length - 2): seq.append(seq[-1] + seq[-2]) return seq[:length] def prime_seq(start_idx: int, length: int = 4) -> list[int]: """Prime numbers starting from index.""" primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] return primes[start_idx:start_idx + length] def power_of_two_seq(start: int, length: int = 4) -> list[int]: """Powers of 2: 2^n, 2^(n+1), ...""" return [2 ** (start + i) for i in range(length)] def factorial_seq(start: int, length: int = 4) -> list[int]: """Factorial sequence: n!, (n+1)!, ...""" from math import factorial return [factorial(start + i) for i in range(length)] # ============== Sequence Factory ============== SEQUENCE_TYPES = { "arithmetic": lambda rng: arithmetic_seq( rng.randint(1, 20), rng.randint(1, 10) ), "arithmetic_neg": lambda rng: arithmetic_seq( rng.randint(20, 50), -rng.randint(1, 5) ), "geometric_2": lambda rng: geometric_seq( rng.randint(1, 5), 2 ), "geometric_3": lambda rng: geometric_seq( rng.randint(1, 3), 3 ), "square": lambda rng: square_seq(rng.randint(1, 10)), "cube": lambda rng: cube_seq(rng.randint(1, 5)), "triangular": lambda rng: triangular_seq(rng.randint(1, 10)), "fibonacci": lambda rng: fibonacci_like_seq( rng.randint(1, 5), rng.randint(1, 5) ), "prime": lambda rng: prime_seq(rng.randint(0, 10)), "power_of_2": lambda rng: power_of_two_seq(rng.randint(0, 6)), } def generate_sequence_pair(seq: list[int]) -> tuple[list, list]: """ Generate a pair of sequences for the task. Returns: (partial, complete): partial has last element as "", complete is full. """ partial = seq[:-1] + [""] return partial, seq # ============== Image Generation ============== def round_to_multiple(x: int, multiple: int = 16) -> int: """Round x up to nearest multiple.""" return ((x + multiple - 1) // multiple) * multiple def create_number_grid( numbers: list, save_path: str, height: int = 224, width: int = 896, fontsize: int = 48, size_multiple: int = 16, ) -> None: """ Create a 1xN grid image with numbers in each cell. Args: numbers: List of numbers/strings to display. save_path: Output file path. height: Target height in pixels (will be rounded to size_multiple). width: Target width in pixels (will be rounded to size_multiple). fontsize: Font size for the numbers. size_multiple: Ensure dimensions are multiples of this (default 16). """ from PIL import Image n = len(numbers) # Ensure dimensions are multiples of size_multiple width = round_to_multiple(width, size_multiple) height = round_to_multiple(height, size_multiple) # Use fixed DPI and calculate figsize dpi = 100 fig_width = width / dpi fig_height = height / dpi fig, ax = plt.subplots(figsize=(fig_width, fig_height), dpi=dpi) fig.subplots_adjust(left=0, right=1, top=1, bottom=0) for i, num in enumerate(numbers): rect = patches.Rectangle( (i, 0), 1, 1, linewidth=2, edgecolor='black', facecolor='white' ) ax.add_patch(rect) ax.text( i + 0.5, 0.5, str(num), fontsize=fontsize, ha='center', va='center', fontweight='bold' ) ax.set_xlim(0, n) ax.set_ylim(0, 1) ax.set_aspect('equal') ax.axis('off') # Save with exact pixel dimensions fig.savefig(save_path, dpi=dpi, facecolor='white', edgecolor='none') plt.close(fig) # Final resize to ensure exact dimensions (16 multiples) img = Image.open(save_path) if img.size != (width, height): img = img.resize((width, height), Image.Resampling.LANCZOS) img.save(save_path) # ============== Dataset Generation ============== class SequenceDatasetGenerator: """Generate sequence prediction dataset with train/test splits.""" def __init__( self, output_dir: str, seed: int = 42, num_pairs: tuple[int, int] = (2, 3), seq_types: list[str] | None = None, image_height: int = 224, image_width: int = 896, fontsize: int = 48, ): """ Args: output_dir: Directory to save the dataset. seed: Random seed for reproducibility. num_pairs: Range of pairs per sample (min, max inclusive). seq_types: List of sequence types to use (None = all). image_height: Image height in pixels (rounded to 16). image_width: Image width in pixels (rounded to 16). fontsize: Font size for numbers. """ self.output_dir = Path(output_dir) self.rng = random.Random(seed) self.num_pairs = num_pairs self.seq_types = seq_types or list(SEQUENCE_TYPES.keys()) self.image_height = round_to_multiple(image_height, 16) self.image_width = round_to_multiple(image_width, 16) self.fontsize = fontsize # Create directories for split in ["train", "test"]: (self.output_dir / split / "images").mkdir(parents=True, exist_ok=True) def _generate_sample(self, sample_id: int) -> dict: """Generate a single sample with multiple sequence pairs.""" num_pairs = self.rng.randint(*self.num_pairs) seq_type = self.rng.choice(self.seq_types) # Generate base sequence and subsequent ones base_seq = SEQUENCE_TYPES[seq_type](self.rng) pairs = [] for i in range(num_pairs): # Shift sequence for each pair if seq_type.startswith("arithmetic"): diff = base_seq[1] - base_seq[0] seq = [x + i * diff for x in base_seq] elif seq_type.startswith("geometric"): ratio = base_seq[1] // base_seq[0] if base_seq[0] != 0 else 2 seq = [x * (ratio ** i) for x in base_seq] else: # For other types, regenerate with offset seq = [x + i for x in base_seq] partial, complete = generate_sequence_pair(seq) pairs.append({ "partial": partial, "complete": complete, "answer": complete[-1], }) return { "id": sample_id, "seq_type": seq_type, "num_pairs": num_pairs, "pairs": pairs, } def _save_sample_images( self, sample: dict, split: str, include_last_answer: bool = True ) -> dict: """Save images for a sample and return metadata.""" sample_id = sample["id"] image_dir = self.output_dir / split / "images" images = [] img_idx = 0 for i, pair in enumerate(sample["pairs"]): # Always save partial (query) image partial_path = f"{sample_id:05d}_{img_idx}.png" create_number_grid( pair["partial"], image_dir / partial_path, height=self.image_height, width=self.image_width, fontsize=self.fontsize, ) images.append(partial_path) img_idx += 1 # Save complete image based on split logic is_last = (i == sample["num_pairs"] - 1) if include_last_answer or not is_last: complete_path = f"{sample_id:05d}_{img_idx}.png" create_number_grid( pair["complete"], image_dir / complete_path, height=self.image_height, width=self.image_width, fontsize=self.fontsize, ) images.append(complete_path) img_idx += 1 return { "id": sample_id, "seq_type": sample["seq_type"], "num_pairs": sample["num_pairs"], "images": images, "answer": sample["pairs"][-1]["answer"], # Last image's answer "sequences": [p["complete"] for p in sample["pairs"]], } def generate(self, num_train: int, num_test: int) -> None: """ Generate the full dataset. Args: num_train: Number of training samples. num_test: Number of test samples. """ train_meta, test_meta = [], [] # Generate training samples (all pairs complete) print(f"Generating {num_train} training samples...") for i in range(num_train): sample = self._generate_sample(i) meta = self._save_sample_images(sample, "train", include_last_answer=True) train_meta.append(meta) if (i + 1) % 50 == 0: print(f" Train: {i + 1}/{num_train}") # Generate test samples (last answer hidden) print(f"Generating {num_test} test samples...") for i in range(num_test): sample = self._generate_sample(num_train + i) meta = self._save_sample_images(sample, "test", include_last_answer=False) test_meta.append(meta) if (i + 1) % 50 == 0: print(f" Test: {i + 1}/{num_test}") # Save metadata with open(self.output_dir / "train.json", "w") as f: json.dump(train_meta, f, indent=2) with open(self.output_dir / "test.json", "w") as f: json.dump(test_meta, f, indent=2) print(f"\nDataset saved to {self.output_dir}") print(f" Train: {num_train} samples") print(f" Test: {num_test} samples") print(f" Image size: {self.image_width}x{self.image_height}") print(f" Sequence types: {self.seq_types}") if __name__ == "__main__": generator = SequenceDatasetGenerator( output_dir="/home/claude/sequence_dataset", seed=42, num_pairs=(2, 3), ) generator.generate(num_train=100, num_test=20)