|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
|
|
|
class ViolenceConv3D(nn.Module):
|
|
|
def __init__(self):
|
|
|
super(ViolenceConv3D, self).__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv3d(3, 32, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
|
|
self.bn1 = nn.BatchNorm3d(32)
|
|
|
self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
|
|
|
|
|
self.conv2 = nn.Conv3d(32, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
|
|
self.bn2 = nn.BatchNorm3d(64)
|
|
|
self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
|
|
|
|
|
|
self.conv3 = nn.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
|
|
self.bn3 = nn.BatchNorm3d(128)
|
|
|
self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
|
|
|
|
|
|
self.conv4 = nn.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
|
|
self.bn4 = nn.BatchNorm3d(256)
|
|
|
self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
|
|
|
|
|
|
self.relu = nn.ReLU()
|
|
|
self.dropout = nn.Dropout(0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.flatten_dim = 256 * 2 * 7 * 7
|
|
|
|
|
|
self.fc1 = nn.Linear(self.flatten_dim, 512)
|
|
|
self.fc2 = nn.Linear(512, 2)
|
|
|
|
|
|
def forward(self, x):
|
|
|
x = self.relu(self.bn1(self.conv1(x)))
|
|
|
x = self.pool1(x)
|
|
|
|
|
|
x = self.relu(self.bn2(self.conv2(x)))
|
|
|
x = self.pool2(x)
|
|
|
|
|
|
x = self.relu(self.bn3(self.conv3(x)))
|
|
|
x = self.pool3(x)
|
|
|
|
|
|
x = self.relu(self.bn4(self.conv4(x)))
|
|
|
x = self.pool4(x)
|
|
|
|
|
|
x = x.view(x.size(0), -1)
|
|
|
x = self.dropout(self.relu(self.fc1(x)))
|
|
|
x = self.fc2(x)
|
|
|
return x
|
|
|
|