File size: 10,126 Bytes
81d7389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
import torchvision.models.video as models
import time
from model import TwoStreamNetwork

# --- Configuration ---
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
DATASET_DIR = os.path.join(BASE_DIR, "Dataset")
MODEL_SAVE_PATH = "best_model_twostream.pth"

IMG_SIZE = 112
SEQ_LEN = 16
BATCH_SIZE = 16
EPOCHS = 80
LEARNING_RATE = 1e-4
PATIENCE = 5

class TwoStreamDataset(Dataset):
    def __init__(self, video_paths, labels):
        self.video_paths = video_paths
        self.labels = labels
        
    def __len__(self):
        return len(self.video_paths)
    
    def __getitem__(self, idx):
        path = self.video_paths[idx]
        label = self.labels[idx]
        
        frames, flows = self._load_data(path)
        
        # To Tensor (C, T, H, W)
        frames = torch.tensor(frames, dtype=torch.float32).permute(3, 0, 1, 2)
        flows = torch.tensor(flows, dtype=torch.float32).permute(3, 0, 1, 2)
        
        return frames, flows, label
    
    def _load_data(self, path):
        cap = cv2.VideoCapture(path)
        frames = []
        try:
            while True:
                ret, frame = cap.read()
                if not ret:
                    break
                frame = cv2.resize(frame, (IMG_SIZE, IMG_SIZE))
                frames.append(frame)
        finally:
            cap.release()
            
        if len(frames) == 0:
            dummy_f = np.zeros((SEQ_LEN, IMG_SIZE, IMG_SIZE, 3), dtype=np.float32)
            dummy_opt = np.zeros((SEQ_LEN, IMG_SIZE, IMG_SIZE, 3), dtype=np.float32)
            return dummy_f, dummy_opt
            
        # Sampling
        if len(frames) < SEQ_LEN:
            while len(frames) < SEQ_LEN:
                frames.append(frames[-1])
        elif len(frames) > SEQ_LEN:
            indices = np.linspace(0, len(frames)-1, SEQ_LEN, dtype=int)
            frames = [frames[i] for i in indices]
            
        rgb_frames = np.array(frames, dtype=np.float32) / 255.0
        
        # Calculate Optical Flow (Dense)
        # Use Farneback from OpenCV
        prev_gray = cv2.cvtColor(frames[0], cv2.COLOR_BGR2GRAY)
        flows = []
        for i in range(len(frames)):
            curr_gray = cv2.cvtColor(frames[i], cv2.COLOR_BGR2GRAY)
            if i == 0:
                # First frame has no flow, use zero
                flow = np.zeros((IMG_SIZE, IMG_SIZE, 2), dtype=np.float32)
            else:
                flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
                prev_gray = curr_gray
            
            mag, _ = cv2.cartToPolar(flow[..., 0], flow[..., 1])
            flow_img = np.dstack((flow[..., 0], flow[..., 1], mag))
            
            flow_img = (flow_img + 20) / 40.0 
            
            flows.append(flow_img)
            
        return rgb_frames, np.array(flows, dtype=np.float32)

# --- Data Preparation ---
def prepare_data():
    violence_dir = os.path.join(DATASET_DIR, 'violence')
    no_violence_dir = os.path.join(DATASET_DIR, 'no-violence')
    
    if not os.path.exists(violence_dir) or not os.path.exists(no_violence_dir):
        raise FileNotFoundError("Dataset directories not found.")

    violence_files = [os.path.join(violence_dir, f) for f in os.listdir(violence_dir) if f.endswith('.avi') or f.endswith('.mp4')]
    no_violence_files = [os.path.join(no_violence_dir, f) for f in os.listdir(no_violence_dir) if f.endswith('.avi') or f.endswith('.mp4')]
    
    X = violence_files + no_violence_files
    y = [1] * len(violence_files) + [0] * len(no_violence_files)
    
    X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.30, random_state=42, stratify=y)
    X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.50, random_state=42, stratify=y_temp)
    
    return (X_train, y_train), (X_val, y_val), (X_test, y_test)

# --- Early Stopping ---
class EarlyStopping:
    def __init__(self, patience=5, verbose=False, path='checkpoint.pth'):
        self.patience = patience
        self.verbose = verbose
        self.counter = 0
        self.best_score = None
        self.early_stop = False
        self.val_loss_min = np.inf
        self.path = path

    def __call__(self, val_loss, model):
        score = -val_loss
        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(val_loss, model)
        elif score < self.best_score:
            self.counter += 1
            if self.verbose:
                print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(val_loss, model)
            self.counter = 0

    def save_checkpoint(self, val_loss, model):
        if self.verbose:
            print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}).  Saving model ...')
        torch.save(model, self.path)
        self.val_loss_min = val_loss

if __name__ == "__main__":
    start_time = time.time()
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    
    try:
        (X_train, y_train), (X_val, y_val), (X_test, y_test) = prepare_data()
        print(f"Dataset Split Stats:")
        print(f"Train: {len(X_train)} samples")
        print(f"Val:   {len(X_val)} samples")
        print(f"Test:  {len(X_test)} samples")
    except Exception as e:
        print(f"Data preparation failed: {e}")
        exit(1)
        
    train_dataset = TwoStreamDataset(X_train, y_train)
    val_dataset = TwoStreamDataset(X_val, y_val)
    test_dataset = TwoStreamDataset(X_test, y_test)
    
    train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
    val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
    test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
    
    model = TwoStreamNetwork().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
    
    early_stopping = EarlyStopping(patience=PATIENCE, verbose=True, path=MODEL_SAVE_PATH)
    
    print("\nStarting Two-Stream Network Training...")
    
    for epoch in range(EPOCHS):
        model.train()
        train_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (rgb_in, flow_in, labels) in enumerate(train_loader):
            rgb_in, flow_in, labels = rgb_in.to(device), flow_in.to(device), labels.to(device)
            
            optimizer.zero_grad()
            outputs = model(rgb_in, flow_in)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            
            train_loss += loss.item()
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
            
            if batch_idx % 10 == 0:
                print(f"Epoch {epoch+1} Batch {batch_idx}/{len(train_loader)} Loss: {loss.item():.4f}", end='\r')
            
        train_acc = 100 * correct / total
        avg_train_loss = train_loss / len(train_loader)
        
        model.eval()
        val_loss = 0.0
        correct_val = 0
        total_val = 0
        
        with torch.no_grad():
            for rgb_in, flow_in, labels in val_loader:
                rgb_in, flow_in, labels = rgb_in.to(device), flow_in.to(device), labels.to(device)
                outputs = model(rgb_in, flow_in)
                loss = criterion(outputs, labels)
                val_loss += loss.item()
                _, predicted = torch.max(outputs.data, 1)
                total_val += labels.size(0)
                correct_val += (predicted == labels).sum().item()
        
        val_acc = 100 * correct_val / total_val
        avg_val_loss = val_loss / len(val_loader)
        
        print(f'\nEpoch [{epoch+1}/{EPOCHS}] '
              f'Train Loss: {avg_train_loss:.4f} Acc: {train_acc:.2f}% '
              f'Val Loss: {avg_val_loss:.4f} Acc: {val_acc:.2f}%')
        
        early_stopping(avg_val_loss, model)
        if early_stopping.early_stop:
            print("Early stopping triggered")
            break
            
    print("\nLoading best Two-Stream model for evaluation...")
    if os.path.exists(MODEL_SAVE_PATH):
        model = torch.load(MODEL_SAVE_PATH)
    else:
        print("Warning: Model file not found.")
        
    model.eval()
    all_preds = []
    all_labels = []
    
    print("Evaluating on Test set...")
    with torch.no_grad():
        for rgb_in, flow_in, labels in test_loader:
            rgb_in, flow_in, labels = rgb_in.to(device), flow_in.to(device), labels.to(device)
            outputs = model(rgb_in, flow_in)
            _, predicted = torch.max(outputs.data, 1)
            all_preds.extend(predicted.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())
            
    print("\n=== Two-Stream Model Evaluation Report ===")
    print(classification_report(all_labels, all_preds, target_names=['No Violence', 'Violence']))
    print("Confusion Matrix:")
    print(confusion_matrix(all_labels, all_preds))
    acc = accuracy_score(all_labels, all_preds)
    print(f"\nFinal Test Accuracy: {acc*100:.2f}%")
    
    elapsed = time.time() - start_time
    print(f"\nTotal execution time: {elapsed/60:.2f} minutes")