import torch import torch.nn as nn import transformers from typing import Optional, Tuple, Union, List from config import ModelConfig class ModelProjector(nn.Module): def __init__(self, config: ModelConfig, audio_hidden_size: int): super().__init__() self.stack_factor = config.stack_factor input_dim = audio_hidden_size * self.stack_factor self.linear1 = nn.Linear(input_dim, config.hidden_size) self.act = nn.GELU() if config.projector_act == 'gelu' else nn.ReLU() self.linear2 = nn.Linear(config.hidden_size, config.hidden_size) self.norm = nn.LayerNorm(config.hidden_size) def forward(self, audio_features: torch.Tensor) -> torch.Tensor: if audio_features.dim() == 3 and audio_features.shape[1] < audio_features.shape[2]: audio_features = audio_features.transpose(1, 2) B, T, C = audio_features.shape if T % self.stack_factor != 0: pad_len = self.stack_factor - (T % self.stack_factor) audio_features = torch.nn.functional.pad(audio_features, (0, 0, 0, pad_len)) T = T + pad_len audio_features = audio_features.view(B, T // self.stack_factor, C * self.stack_factor) x = self.linear1(audio_features) x = self.act(x) x = self.linear2(x) x = self.norm(x) return x class MultiModalModel(nn.Module): def __init__(self, config: ModelConfig): super().__init__() self.config = config self.audio_encoder = transformers.AutoModel.from_pretrained(config.audio_model_id).encoder for param in self.audio_encoder.parameters(): param.requires_grad = False audio_hidden_size = self.audio_encoder.config.hidden_size self.llm = transformers.AutoModelForCausalLM.from_pretrained(config.text_model_id, trust_remote_code=True) self.llm_hidden_size = self.llm.config.hidden_size self.projector = ModelProjector(config, audio_hidden_size) if config.hidden_size != self.llm_hidden_size: self.projector.linear2 = nn.Linear(config.hidden_size, self.llm_hidden_size) self.projector.norm = nn.LayerNorm(self.llm_hidden_size) def forward( self, input_ids: torch.Tensor, audio_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, **kwargs ): inputs_embeds = self.llm.get_input_embeddings()(input_ids) if audio_values is not None: audio_outputs = self.audio_encoder(audio_values) audio_features = audio_outputs.last_hidden_state audio_projected = self.projector(audio_features) inputs_embeds = torch.cat([audio_projected, inputs_embeds], dim=1) if labels is not None: audio_labels = torch.full((audio_projected.shape[0], audio_projected.shape[1]), -100, device=labels.device, dtype=labels.dtype) labels = torch.cat([audio_labels, labels], dim=1) if "attention_mask" in kwargs: audio_mask = torch.ones((audio_projected.shape[0], audio_projected.shape[1]), device=inputs_embeds.device, dtype=kwargs["attention_mask"].dtype) kwargs["attention_mask"] = torch.cat([audio_mask, kwargs["attention_mask"]], dim=1) # Match LLM dtype (e.g. bfloat16) to avoid "float != bfloat16" in linear layers llm_dtype = next(self.llm.parameters()).dtype inputs_embeds = inputs_embeds.to(llm_dtype) if labels is not None: labels = labels.to(llm_dtype) if labels.dtype.is_floating_point else labels # Drop non-tensor keys (e.g. continuation) so LLM forward doesn't receive them kwargs = {k: v for k, v in kwargs.items() if isinstance(v, torch.Tensor)} outputs = self.llm( inputs_embeds=inputs_embeds, labels=labels, **kwargs ) return outputs def generate(self, input_ids, audio_values=None, **kwargs): inputs_embeds = self.llm.get_input_embeddings()(input_ids) if audio_values is not None: audio_outputs = self.audio_encoder(audio_values) audio_features = audio_outputs.last_hidden_state audio_projected = self.projector(audio_features) inputs_embeds = torch.cat([audio_projected, inputs_embeds], dim=1) if "attention_mask" in kwargs: audio_mask = torch.ones((audio_projected.shape[0], audio_projected.shape[1]), device=inputs_embeds.device, dtype=kwargs["attention_mask"].dtype) kwargs["attention_mask"] = torch.cat([audio_mask, kwargs["attention_mask"]], dim=1) inputs_embeds = inputs_embeds.to(next(self.llm.parameters()).dtype) return self.llm.generate(inputs_embeds=inputs_embeds, **kwargs) def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): self.llm.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)