# Remove Blank Rows # - We can use .dropna() to remove blank depending on axis=0(rows), axis=1(columns) import pandas as pd health_data = pd.read_csv('data.csv', header=0, sep=',') health_data.dropna(axis=0, inplace=True) # Chú thích: inplace=True => Xóa các ô lỗi theo hàng ; inplace=False => giữ nguyên các ô lỗi theo hàng print(health_data) # Data Types # - We can use the info() function to list the data types within our dataset: import pandas as pd health_data = pd.read_csv("data.csv", header=0, sep=",") print(health_data.info()) # - We can use the astype() function to convert the data into float64. import pandas as pd health_data = pd.read_csv('data.csv', header=0, sep=',') health_data['Hours_Work'] = health_data['Hours_Work'].astype(float) health_data['Hours_Sleep'] = health_data['Hours_Sleep'].astype(float) print(health_data.info()) # Analyze the data # - We can use the describe() function in Python to summarize data: import pandas as pd health_data = pd.read_csv('data.csv',header=0, sep=',') pd.set_option('display.max_columns', None) # Có thể dùng thêm pd.set_option('display.max_rows', None) print(health_data.describe()) # Count - Counts the number of observations # Mean - The average value # Std - Standard deviation (explained in the statistics chapter) # Max - The highest value # Min - The lowest value # 25%, 50% and 75% are percentiles (explained in the statistics chapter)