Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Finnish
Size:
10K<n<100K
License:
| # coding=utf-8 | |
| # Copyright 2020 HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| import datasets | |
| _DESCRIPTION = """\ | |
| An open, broad-coverage corpus for Finnish named entity recognition presented in Luoma et al. (2020) A Broad-coverage Corpus for Finnish Named Entity Recognition. | |
| """ | |
| _HOMEPAGE_URL = "https://turkunlp.org/fin-ner.html" | |
| _URL = "https://github.com/TurkuNLP/turku-ner-corpus/archive/v1.0.tar.gz" | |
| _CITATION = """\ | |
| @inproceedings{luoma-etal-2020-broad, | |
| title = "A Broad-coverage Corpus for {F}innish Named Entity Recognition", | |
| author = {Luoma, Jouni and Oinonen, Miika and Pyyk{\"o}nen, Maria and Laippala, Veronika and Pyysalo, Sampo}, | |
| booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference", | |
| year = "2020", | |
| url = "https://www.aclweb.org/anthology/2020.lrec-1.567", | |
| pages = "4615--4624", | |
| } | |
| """ | |
| class TurkuNERCorpus(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.0.0") | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "B-DATE", | |
| "B-EVENT", | |
| "B-LOC", | |
| "B-ORG", | |
| "B-PER", | |
| "B-PRO", | |
| "I-DATE", | |
| "I-EVENT", | |
| "I-LOC", | |
| "I-ORG", | |
| "I-PER", | |
| "I-PRO", | |
| "O", | |
| ] | |
| ) | |
| ), | |
| }, | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE_URL, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| archive = dl_manager.download(_URL) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "train"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "valid"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "test"}, | |
| ), | |
| ] | |
| def _generate_examples(self, files, data_type): | |
| if data_type == "train": | |
| data_path = "turku-ner-corpus-1.0/data/conll/train.tsv" | |
| elif data_type == "valid": | |
| data_path = "turku-ner-corpus-1.0/data/conll/dev.tsv" | |
| elif data_type == "test": | |
| data_path = "turku-ner-corpus-1.0/data/conll/test.tsv" | |
| else: | |
| raise Exception("data_type not understood") | |
| sentence_counter = 0 | |
| for path, f in files: | |
| if path == data_path: | |
| current_words = [] | |
| current_labels = [] | |
| for row in f: | |
| row = row.decode("utf-8").rstrip() | |
| row_split = row.split("\t") | |
| if len(row_split) == 2: | |
| token, label = row_split | |
| current_words.append(token) | |
| current_labels.append(label) | |
| else: | |
| if not current_words: | |
| continue | |
| assert len(current_words) == len(current_labels), "word len doesnt match label length" | |
| sentence = ( | |
| sentence_counter, | |
| { | |
| "id": str(sentence_counter), | |
| "tokens": current_words, | |
| "ner_tags": current_labels, | |
| }, | |
| ) | |
| sentence_counter += 1 | |
| current_words = [] | |
| current_labels = [] | |
| yield sentence | |
| # if something remains: | |
| if current_words: | |
| sentence = ( | |
| sentence_counter, | |
| { | |
| "id": str(sentence_counter), | |
| "tokens": current_words, | |
| "ner_tags": current_labels, | |
| }, | |
| ) | |
| yield sentence | |
| break | |