File size: 6,170 Bytes
b03742a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch

from diffusers.pipelines import FluxPipeline
from omini.pipeline.flux_omini import Condition, generate, seed_everything, convert_to_condition
from omini.rotation import RotationConfig, RotationTuner
from PIL import Image


def load_rotation(transformer, path: str, adapter_name: str = "default", strict: bool = False):
    """
    Load rotation adapter weights.
    
    Args:
        path: Directory containing the saved adapter weights
        adapter_name: Name of the adapter to load
        strict: Whether to strictly match all keys
    """
    from safetensors.torch import load_file
    import os
    import yaml
    
    device = transformer.device
    print(f"device for loading: {device}")
    
    # Try to load safetensors first, then fallback to .pth
    safetensors_path = os.path.join(path, f"{adapter_name}.safetensors")
    pth_path = os.path.join(path, f"{adapter_name}.pth")
    
    if os.path.exists(safetensors_path):
        state_dict = load_file(safetensors_path)
        print(f"Loaded rotation adapter from {safetensors_path}")
    elif os.path.exists(pth_path):
        state_dict = torch.load(pth_path, map_location=device)
        print(f"Loaded rotation adapter from {pth_path}")
    else:
        raise FileNotFoundError(
            f"No adapter weights found for '{adapter_name}' in {path}\n"
            f"Looking for: {safetensors_path} or {pth_path}"
        )
        
    # # Get the device and dtype of the transformer
    transformer_device = next(transformer.parameters()).device
    transformer_dtype = next(transformer.parameters()).dtype
    
    
    
    state_dict_with_adapter = {}
    for k, v in state_dict.items():
        # Reconstruct the full key with adapter name
        new_key = k.replace(".rotation.", f".rotation.{adapter_name}.")
        if "_adapter_config" in new_key:
            print(f"adapter_config key: {new_key}")
        
        
        # Move to target device and dtype
        # Check if this parameter should keep its original dtype (e.g., indices, masks)
        if v.dtype in [torch.long, torch.int, torch.int32, torch.int64, torch.bool]:
            # Keep integer/boolean dtypes, only move device
            state_dict_with_adapter[new_key] = v.to(device=transformer_device)
        else:
            # Convert floating point tensors to target dtype and device
            state_dict_with_adapter[new_key] = v.to(device=transformer_device, dtype=transformer_dtype)
    
    # Add adapter name back to keys (reverse of what we did in save)
    state_dict_with_adapter = {
        k.replace(".rotation.", f".rotation.{adapter_name}."): v 
        for k, v in state_dict.items()
    }
    
    
    # Load into the model
    missing, unexpected = transformer.load_state_dict(
        state_dict_with_adapter, 
        strict=strict
    )
    
    if missing:
        print(f"Missing keys: {missing[:5]}{'...' if len(missing) > 5 else ''}")
    if unexpected:
        print(f"Unexpected keys: {unexpected[:5]}{'...' if len(unexpected) > 5 else ''}")
    
    # Load config if available
    config_path = os.path.join(path, f"{adapter_name}_config.yaml")
    if os.path.exists(config_path):
        with open(config_path, 'r') as f:
            config = yaml.safe_load(f)
        print(f"Loaded config: {config}")
    
    total_params = sum(p.numel() for p in state_dict.values())
    print(f"Loaded {len(state_dict)} tensors ({total_params:,} parameters)")
    
    return state_dict


# prepare input image and prompt
image = Image.open("assets/coffee.png").convert("RGB")

w, h, min_dim = image.size + (min(image.size),)
image = image.crop(
    ((w - min_dim) // 2, (h - min_dim) // 2, (w + min_dim) // 2, (h + min_dim) // 2)
).resize((512, 512))

prompt = "In a bright room. A cup of a coffee with some beans on the side. They are placed on a dark wooden table."

canny_image = convert_to_condition("canny", image)
condition = Condition(canny_image, "canny")

seed_everything()



for i in range(40, 60):
    pipe = FluxPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
    )


    # add adapter to the transformer
    transformer = pipe.transformer

    adapter_name = "default"
    transformer._hf_peft_config_loaded = True

    rotation_adapter_config = {
        "r": 4,
        "num_rotations": 4,
        "target_modules": "(.*x_embedder|.*(?<!single_)transformer_blocks\\.[0-9]+\\.norm1\\.linear|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_k|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_q|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_v|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_out\\.0|.*(?<!single_)transformer_blocks\\.[0-9]+\\.ff\\.net\\.2|.*single_transformer_blocks\\.[0-9]+\\.norm\\.linear|.*single_transformer_blocks\\.[0-9]+\\.proj_mlp|.*single_transformer_blocks\\.[0-9]+\\.proj_out|.*single_transformer_blocks\\.[0-9]+\\.attn.to_k|.*single_transformer_blocks\\.[0-9]+\\.attn.to_q|.*single_transformer_blocks\\.[0-9]+\\.attn.to_v|.*single_transformer_blocks\\.[0-9]+\\.attn.to_out)",
    }

    config = RotationConfig(**rotation_adapter_config)
    config.T = float(i + 1) / 20
    rotation_tuner = RotationTuner(
                        transformer,
                        config,
                        adapter_name=adapter_name,
                    )
    # Convert rotation tuner to bfloat16
    transformer = transformer.to(torch.bfloat16)
    transformer.set_adapter(adapter_name)

    # load adapter weights
    load_rotation(
        transformer,
        path="runs/20251110-191859/ckpt/4000",
        adapter_name=adapter_name,
        strict=False,
    )

    pipe = pipe.to("cuda")





    result_img = generate(
        pipe,
        prompt=prompt,
        conditions=[condition],
    ).images[0]

    concat_image = Image.new("RGB", (1536, 512))
    concat_image.paste(image, (0, 0))
    concat_image.paste(condition.condition, (512, 0))
    concat_image.paste(result_img, (1024, 0))

    # Save images
    result_img.save(f"result_{i+1}.png")
    concat_image.save(f"result_concat_{i+1}.png")
    print(f"Saved result_{i+1}.png and result_concat_{i+1}.png")