File size: 12,494 Bytes
b03742a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import openai
import base64
from pathlib import Path
import random
import os
evaluation_prompts = {
"identity": """
Compare the original subject image with the generated image.
Rate on a scale of 1-5 how well the essential identifying features
are preserved (logos, brand marks, distinctive patterns).
Score: [1-5]
Reasoning: [explanation]
""",
"material": """
Evaluate the material quality and surface characteristics.
Rate on a scale of 1-5 how accurately materials are represented
(textures, reflections, surface properties).
Score: [1-5]
Reasoning: [explanation]
""",
"color": """
Assess color fidelity in regions NOT specified for modification.
Rate on a scale of 1-5 how consistent colors remain.
Score: [1-5]
Reasoning: [explanation]
""",
"appearance": """
Evaluate the overall realism and coherence of the generated image.
Rate on a scale of 1-5 how realistic and natural it appears.
Score: [1-5]
Reasoning: [explanation]
""",
"modification": """
Given the text prompt: "{prompt}"
Rate on a scale of 1-5 how well the specified changes are executed.
Score: [1-5]
Reasoning: [explanation]
"""
}
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def evaluate_subject_driven_generation(
original_image_path,
generated_image_path,
text_prompt,
client
):
"""
Evaluate a subject-driven generation using GPT-4o vision
"""
# Encode images
original_img = encode_image(original_image_path)
generated_img = encode_image(generated_image_path)
results = {}
# 1. Identity Preservation
response = client.chat.completions.create(
model="gpt-4o",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "Original subject image:"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{original_img}"}},
{"type": "text", "text": "Generated image:"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
{"type": "text", "text": evaluation_prompts["identity"]}
]
}],
max_tokens=300
)
results['identity'] = parse_score(response.choices[0].message.content)
# 2. Material Quality
response = client.chat.completions.create(
model="gpt-4o",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "Evaluate this generated image:"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
{"type": "text", "text": evaluation_prompts["material"]}
]
}],
max_tokens=300
)
results['material'] = parse_score(response.choices[0].message.content)
# 3. Color Fidelity
response = client.chat.completions.create(
model="gpt-4o",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "Original:"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{original_img}"}},
{"type": "text", "text": "Generated:"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
{"type": "text", "text": evaluation_prompts["color"]}
]
}],
max_tokens=300
)
results['color'] = parse_score(response.choices[0].message.content)
# 4. Natural Appearance
response = client.chat.completions.create(
model="gpt-4o",
messages=[{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
{"type": "text", "text": evaluation_prompts["appearance"]}
]
}],
max_tokens=300
)
results['appearance'] = parse_score(response.choices[0].message.content)
# 5. Modification Accuracy
response = client.chat.completions.create(
model="gpt-4o",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": f"Text prompt: {text_prompt}"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
{"type": "text", "text": evaluation_prompts["modification"].format(prompt=text_prompt)}
]
}],
max_tokens=300
)
results['modification'] = parse_score(response.choices[0].message.content)
return results
def parse_score(response_text):
"""Extract score from GPT-4o response"""
# Look for "Score: X" pattern
import re
match = re.search(r'Score:\s*(\d+)', response_text)
if match:
return int(match.group(1))
return None
subject_names = [
"backpack", "backpack_dog", "bear_plushie", "berry_bowl", "can",
"candle", "cat", "cat2", "clock", "colorful_sneaker",
"dog", "dog2", "dog3", "dog5", "dog6",
"dog7", "dog8", "duck_toy", "fancy_boot", "grey_sloth_plushie",
"monster_toy", "pink_sunglasses", "poop_emoji", "rc_car", "red_cartoon",
"robot_toy", "shiny_sneaker", "teapot", "vase", "wolf_plushie"
]
def get_prompt(subject_id, prompt_id):
# subject in 0|1|2|3|4|5|8|9|17|18|19|20|21|22|23|24|25|26|27|28|29
if subject_id in [0,1,2,3,4,5,8,9,17,18,19,20,21,22,23,24,25,26,27,28,29]:
subject_name = subject_names[subject_id]
prompts = [
f"a {subject_name} in the jungle",
f"a {subject_name} in the snow",
f"a {subject_name} on the beach",
f"a {subject_name} on a cobblestone street",
f"a {subject_name} on top of pink fabric",
f"a {subject_name} on top of a wooden floor",
f"a {subject_name} with a city in the background",
f"a {subject_name} with a mountain in the background",
f"a {subject_name} with a blue house in the background",
f"a {subject_name} on top of a purple rug in a forest",
f"a {subject_name} with a wheat field in the background",
f"a {subject_name} with a tree and autumn leaves in the background",
f"a {subject_name} with the Eiffel Tower in the background",
f"a {subject_name} floating on top of water",
f"a {subject_name} floating in an ocean of milk",
f"a {subject_name} on top of green grass with sunflowers around it",
f"a {subject_name} on top of a mirror",
f"a {subject_name} on top of the sidewalk in a crowded street",
f"a {subject_name} on top of a dirt road",
f"a {subject_name} on top of a white rug",
f"a red {subject_name}",
f"a purple {subject_name}",
f"a shiny {subject_name}",
f"a wet {subject_name}",
f"a cube shaped {subject_name}"
]
else:
prompts = [
f"a {subject_name} in the jungle",
f"a {subject_name} in the snow",
f"a {subject_name} on the beach",
f"a {subject_name} on a cobblestone street",
f"a {subject_name} on top of pink fabric",
f"a {subject_name} on top of a wooden floor",
f"a {subject_name} with a city in the background",
f"a {subject_name} with a mountain in the background",
f"a {subject_name} with a blue house in the background",
f"a {subject_name} on top of a purple rug in a forest",
f"a {subject_name} wearing a red hat",
f"a {subject_name} wearing a santa hat",
f"a {subject_name} wearing a rainbow scarf",
f"a {subject_name} wearing a black top hat and a monocle",
f"a {subject_name} in a chef outfit",
f"a {subject_name} in a firefighter outfit",
f"a {subject_name} in a police outfit",
f"a {subject_name} wearing pink glasses",
f"a {subject_name} wearing a yellow shirt",
f"a {subject_name} in a purple wizard outfit",
f"a red {subject_name}",
f"a purple {subject_name}",
f"a shiny {subject_name}",
f"a wet {subject_name}",
f"a cube shaped {subject_name}"
]
return prompts[prompt_id]
def batch_evaluate_dreambooth(client, generate_fn, dataset_path, output_csv):
"""
Evaluate 750 image pairs with 5 seeds each
"""
import pandas as pd
results_list = []
# Iterate through DreamBooth dataset
for subject_id in range(30): # 30 subjects
subject_name = subject_names[subject_id]
for prompt_id in range(25): # 25 prompts per subject
original = f"{dataset_path}/{subject_name}"
# get a random file in this folder
original_files = list(Path(original).glob("*.png"))
if len(original_files) == 0:
raise ValueError(f"No original images found in {original}")
original = str(original_files[0])
for seed in range(5): # 5 different seeds
# take random file in the folder
prompt = get_prompt(subject_id, prompt_id)
# generated image path
generated_folder = f"{dataset_path}/{subject_name}/generated/"
os.makedirs(generated_folder, exist_ok=True)
generated = f"{generated_folder}/gen_seed{seed}_prompt{prompt_id}.png"
generate_fn(
prompt=prompt,
subject_image_path=original,
output_image_path=generated,
seed=seed
)
scores = evaluate_subject_driven_generation(
original, generated, prompt, client
)
results_list.append({
'subject_id': subject_id,
'subject_name': subject_name,
'prompt_id': prompt_id,
'seed': seed,
'prompt': prompt,
**scores
})
# Save results
df = pd.DataFrame(results_list)
df.to_csv(output_csv, index=False)
# Calculate statistics
print(df.groupby('subject_id').mean())
print(f"\nOverall averages:")
print(df[['identity', 'material', 'color', 'appearance', 'modification']].mean())
def evaluate_omini_control():
import torch
from diffusers.pipelines import FluxPipeline
from PIL import Image
from omini.pipeline.flux_omini import Condition, generate, seed_everything
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")
pipe.load_lora_weights(
"Yuanshi/OminiControl",
weight_name=f"omini/subject_512.safetensors",
adapter_name="subject",
)
def generate_fn(image_path, prompt, seed, output_path):
seed_everything(seed)
image = Image.open(image_path).convert("RGB").resize((512, 512))
condition = Condition.from_image(
image,
"subject", position_delta=(0, 32)
)
result_img = generate(
pipe,
prompt=prompt,
conditions=[condition],
).images[0]
result_img.save(output_path)
return generate_fn
if __name__ == "__main__":
openai.api_key = os.getenv("OPENAI_API_KEY")
# client = openai.Client()
# generate_fn = evaluate_omini_control()
# dataset_path = "data/dreambooth"
# output_csv = "evaluation_subject_driven_omini_control.csv"
# batch_evaluate_dreambooth(
# client,
# generate_fn,
# dataset_path,
# output_csv
# )
result = evaluate_subject_driven_generation(
"data/dreambooth/backpack/00.jpg",
"data/dreambooth/backpack/01.jpg",
"a backpack in the jungle",
openai.Client()
)
print(result) |