Papers
arxiv:1608.04363

Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification

Published on Aug 15, 2016
Authors:
,

Abstract

Deep convolutional neural networks combined with audio data augmentation achieve state-of-the-art results for environmental sound classification, outperforming both shallow models and unconditioned augmentation approaches.

AI-generated summary

The ability of deep convolutional neural networks (CNN) to learn discriminative spectro-temporal patterns makes them well suited to environmental sound classification. However, the relative scarcity of labeled data has impeded the exploitation of this family of high-capacity models. This study has two primary contributions: first, we propose a deep convolutional neural network architecture for environmental sound classification. Second, we propose the use of audio data augmentation for overcoming the problem of data scarcity and explore the influence of different augmentations on the performance of the proposed CNN architecture. Combined with data augmentation, the proposed model produces state-of-the-art results for environmental sound classification. We show that the improved performance stems from the combination of a deep, high-capacity model and an augmented training set: this combination outperforms both the proposed CNN without augmentation and a "shallow" dictionary learning model with augmentation. Finally, we examine the influence of each augmentation on the model's classification accuracy for each class, and observe that the accuracy for each class is influenced differently by each augmentation, suggesting that the performance of the model could be improved further by applying class-conditional data augmentation.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1608.04363 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1608.04363 in a dataset README.md to link it from this page.

Spaces citing this paper 1

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.