On the extreme eigenvalues and asymptotic conditioning of a class of Toeplitz matrix-sequences arising from fractional problems
Abstract
The analysis of the spectral features of a Toeplitz matrix-sequence left{T_{n}(f)right}_{ninmathbb N}, generated by a symbol fin L^1([-π,π]), real-valued almost everywhere (a.e.), has been provided in great detail in the last century, as well as the study of the conditioning, when f is nonnegative a.e. Here we consider a novel type of problem arising in the numerical approximation of distributed-order fractional differential equations (FDEs), where the matrices under consideration take the form \[ T_{n}=c_0T_{n}(f_0)+c_{1} h^h T_{n}(f_{1})+c_{2} h^{2h} T_{n}(f_{2})+\cdots+c_{n-1} h^{(n-1)h}T_{n}(f_{n-1}), \] c_0,c_{1},ldots, c_{n-1} in [c_*,c^*], c^*ge c_*>0, independent of n, h=1{n}, f_jsim g_j, g_j=|θ|^{2-jh}, j=0,ldots,n-1. Since the resulting generating function depends on n, the standard theory cannot be applied and the analysis has to be performed using new ideas. Few selected numerical experiments are presented, also in connection with matrices that come from distributed-order FDE problems, and the adherence with the theoretical analysis is discussed together with open questions and future investigations.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper