Are Large Language Models able to Predict Highly Cited Papers? Evidence from Statistical Publications
Abstract
Large language models can predict highly cited papers using early-stage textual information, demonstrating stable performance and revealing recurring research topics like causal inference and deep learning.
Predicting highly-cited papers is a long-standing challenge due to the complex interactions of research content, scholarly communities, and temporal dynamics. Recent advances in large language models (LLMs) raise the question of whether early-stage textual information can provide useful signals of long-term scientific impact. Focusing on statistical publications, we propose a flexible, text-centered framework that leverages LLMs and structured prompt design to predict highly cited papers. Specifically, we utilize information available at the time of publication, including titles, abstracts, keywords, and limited bibliographic metadata. Using a large corpus of statistical papers, we evaluate predictive performance across multiple publication periods and alternative definitions of highly cited papers. The proposed approach achieves stable and competitive performance relative to existing methods and demonstrates strong generalization over time. Textual analysis further reveals that papers predicted as highly cited concentrate on recurring topics such as causal inference and deep learning. To facilitate practical use of the proposed approach, we further develop a WeChat mini program, Stat Highly Cited Papers, which provides an accessible interface for early-stage citation impact assessment. Overall, our results provide empirical evidence that LLMs can capture meaningful early signals of long-term citation impact, while also highlighting their limitations as tools for research impact assessment.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper