SPARC-RAG: Adaptive Sequential-Parallel Scaling with Context Management for Retrieval-Augmented Generation
Abstract
SPARC-RAG is a multi-agent framework that improves retrieval-augmented generation for complex question answering by coordinating sequential and parallel scaling with shared context management and targeted sub-query generation.
Retrieval-Augmented Generation (RAG) grounds large language model outputs in external evidence, but remains challenged on multi-hop question answering that requires long reasoning. Recent works scale RAG at inference time along two complementary dimensions: sequential depth for iterative refinement and parallel width for coverage expansion. However, naive scaling causes context contamination and scaling inefficiency, leading to diminishing or negative returns despite increased computation. To address these limitations, we propose SPARC-RAG, a multi-agent framework that coordinates sequential and parallel inference-time scaling under a unified context management mechanism. SPARC-RAG employs specialized agents that maintain a shared global context and provide explicit control over the scaling process. It generates targeted, complementary sub-queries for each branch to enable diverse parallel exploration, and explicitly regulates exiting decisions based on answer correctness and evidence grounding. To optimize scaling behavior, we further introduce a lightweight fine-tuning method with process-level verifiable preferences, which improves the efficiency of sequential scaling and effectiveness of parallel scaling. Across single- and multi-hop QA benchmarks, SPARC-RAG consistently outperforms previous RAG baselines, yielding an average +6.2 F1 improvement under lower inference cost.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper