MirrorLA: Reflecting Feature Map for Vision Linear Attention
Abstract
Linear attention with MirrorLA framework improves performance by using learnable Householder reflections to rotate feature geometry and retain semantic information, achieving state-of-the-art results without sacrificing representational fidelity.
Linear attention significantly reduces the computational complexity of Transformers from quadratic to linear, yet it consistently lags behind softmax-based attention in performance. We identify the root cause of this degradation as the non-negativity constraint imposed on kernel feature maps: standard projections like ReLU act as "passive truncation" operators, indiscriminately discarding semantic information residing in the negative domain. We propose MirrorLA, a geometric framework that substitutes passive truncation with active reorientation. By leveraging learnable Householder reflections, MirrorLA rotates the feature geometry into the non-negative orthant to maximize information retention. Our approach restores representational density through a cohesive, multi-scale design: it first optimizes local discriminability via block-wise isometries, stabilizes long-context dynamics using variance-aware modulation to diversify activations, and finally, integrates dispersed subspaces via cross-head reflections to induce global covariance mixing. MirrorLA achieves state-of-the-art performance across standard benchmarks, demonstrating that strictly linear efficiency can be achieved without compromising representational fidelity.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper