Towards Fair and Comprehensive Evaluation of Routers in Collaborative LLM Systems
Abstract
A novel evaluation framework and lightweight router called ProbeDirichlet are introduced for efficient and robust routing of queries between local and cloud-based language models.
Large language models (LLMs) have achieved success, but cost and privacy constraints necessitate deploying smaller models locally while offloading complex queries to cloud-based models. Existing router evaluations are unsystematic, overlooking scenario-specific requirements and out-of-distribution robustness. We propose RouterXBench, a principled evaluation framework with three dimensions: router ability, scenario alignment, and cross-domain robustness. Unlike prior work that relies on output probabilities or external embeddings, we utilize internal hidden states that capture model uncertainty before answer generation. We introduce ProbeDirichlet, a lightweight router that aggregates cross-layer hidden states via learnable Dirichlet distributions with probabilistic training. Trained on multi-domain data, it generalizes robustly across in-domain and out-of-distribution scenarios. Our results show ProbeDirichlet achieves 16.68% and 18.86% relative improvements over the best baselines in router ability and high-accuracy scenarios, with consistent performance across model families, model scales, heterogeneous tasks, and agentic workflows.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper