new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 23

Syntax-Aware On-the-Fly Code Completion

Code completion aims to help improve developers' productivity by suggesting the next code tokens from a given context. Various approaches have been proposed to incorporate abstract syntax tree (AST) information for model training, ensuring that code completion is aware of the syntax of the programming languages. However, existing syntax-aware code completion approaches are not on-the-fly, as we found that for every two-thirds of characters that developers type, AST fails to be extracted because it requires the syntactically correct source code, limiting its practicality in real-world scenarios. On the other hand, existing on-the-fly code completion does not consider syntactic information yet. In this paper, we propose PyCoder to leverage token types, a kind of lightweight syntactic information, which is readily available and aligns with the natural order of source code. Our PyCoder is trained in a multi-task training manner so that by learning the supporting task of predicting token types during the training phase, the models achieve better performance on predicting tokens and lines of code without the need for token types in the inference phase. Comprehensive experiments show that PyCoder achieves the first rank on the CodeXGLUE leaderboard with an accuracy of 77.12% for the token-level predictions, which is 0.43%-24.25% more accurate than baselines. In addition, PyCoder achieves an exact match of 43.37% for the line-level predictions, which is 3.63%-84.73% more accurate than baselines. These results lead us to conclude that token type information (an alternative to syntactic information) that is rarely used in the past can greatly improve the performance of code completion approaches, without requiring the syntactically correct source code like AST-based approaches do. Our PyCoder is publicly available on HuggingFace.

  • 3 authors
·
Nov 8, 2022

StructCoder: Structure-Aware Transformer for Code Generation

There has been a recent surge of interest in automating software engineering tasks using deep learning. This paper addresses the problem of code generation, where the goal is to generate target code given source code in a different language or a natural language description. Most state-of-the-art deep learning models for code generation use training strategies primarily designed for natural language. However, understanding and generating code requires a more rigorous comprehension of the code syntax and semantics. With this motivation, we develop an encoder-decoder Transformer model where both the encoder and decoder are explicitly trained to recognize the syntax and data flow in the source and target codes, respectively. We not only make the encoder structure-aware by leveraging the source code's syntax tree and data flow graph, but we also support the decoder in preserving the syntax and data flow of the target code by introducing two novel auxiliary tasks: AST (Abstract Syntax Tree) paths prediction and data flow prediction. To the best of our knowledge, this is the first work to introduce a structure-aware Transformer decoder that models both syntax and data flow to enhance the quality of generated code. The proposed StructCoder model achieves state-of-the-art performance on code translation and text-to-code generation tasks in the CodeXGLUE benchmark, and improves over baselines of similar size on the APPS code generation benchmark. Our code is publicly available at https://github.com/reddy-lab-code-research/StructCoder/.

  • 3 authors
·
Jun 10, 2022

Assessing Small Language Models for Code Generation: An Empirical Study with Benchmarks

The recent advancements of Small Language Models (SLMs) have opened new possibilities for efficient code generation. SLMs offer lightweight and cost-effective alternatives to Large Language Models (LLMs), making them attractive for use in resource-constrained environments. However, empirical understanding of SLMs, particularly their capabilities, limitations, and performance trade-offs in code generation remains limited. This study presents a comprehensive empirical evaluation of 20 open-source SLMs ranging from 0.4B to 10B parameters on five diverse code-related benchmarks (HumanEval, MBPP, Mercury, HumanEvalPack, and CodeXGLUE). The models are assessed along three dimensions: i) functional correctness of generated code, ii) computational efficiency and iii) performance across multiple programming languages. The findings of this study reveal that several compact SLMs achieve competitive results while maintaining a balance between performance and efficiency, making them viable for deployment in resource-constrained environments. However, achieving further improvements in accuracy requires switching to larger models. These models generally outperform their smaller counterparts, but they require much more computational power. We observe that for 10% performance improvements, models can require nearly a 4x increase in VRAM consumption, highlighting a trade-off between effectiveness and scalability. Besides, the multilingual performance analysis reveals that SLMs tend to perform better in languages such as Python, Java, and PHP, while exhibiting relatively weaker performance in Go, C++, and Ruby. However, statistical analysis suggests these differences are not significant, indicating a generalizability of SLMs across programming languages. Based on the findings, this work provides insights into the design and selection of SLMs for real-world code generation tasks.

  • 6 authors
·
Jul 3, 2025