new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Wan-Move: Motion-controllable Video Generation via Latent Trajectory Guidance

We present Wan-Move, a simple and scalable framework that brings motion control to video generative models. Existing motion-controllable methods typically suffer from coarse control granularity and limited scalability, leaving their outputs insufficient for practical use. We narrow this gap by achieving precise and high-quality motion control. Our core idea is to directly make the original condition features motion-aware for guiding video synthesis. To this end, we first represent object motions with dense point trajectories, allowing fine-grained control over the scene. We then project these trajectories into latent space and propagate the first frame's features along each trajectory, producing an aligned spatiotemporal feature map that tells how each scene element should move. This feature map serves as the updated latent condition, which is naturally integrated into the off-the-shelf image-to-video model, e.g., Wan-I2V-14B, as motion guidance without any architecture change. It removes the need for auxiliary motion encoders and makes fine-tuning base models easily scalable. Through scaled training, Wan-Move generates 5-second, 480p videos whose motion controllability rivals Kling 1.5 Pro's commercial Motion Brush, as indicated by user studies. To support comprehensive evaluation, we further design MoveBench, a rigorously curated benchmark featuring diverse content categories and hybrid-verified annotations. It is distinguished by larger data volume, longer video durations, and high-quality motion annotations. Extensive experiments on MoveBench and the public dataset consistently show Wan-Move's superior motion quality. Code, models, and benchmark data are made publicly available.

AlibabaTongyiLab TongyiLab
·
Dec 9, 2025 5

AgriFM: A Multi-source Temporal Remote Sensing Foundation Model for Crop Mapping

Accurate crop mapping fundamentally relies on modeling multi-scale spatiotemporal patterns, where spatial scales range from individual field textures to landscape-level context, and temporal scales capture both short-term phenological transitions and full growing-season dynamics. Transformer-based remote sensing foundation models (RSFMs) offer promising potential for crop mapping due to their innate ability for unified spatiotemporal processing. However, current RSFMs remain suboptimal for crop mapping: they either employ fixed spatiotemporal windows that ignore the multi-scale nature of crop systems or completely disregard temporal information by focusing solely on spatial patterns. To bridge these gaps, we present AgriFM, a multi-source remote sensing foundation model specifically designed for agricultural crop mapping. Our approach begins by establishing the necessity of simultaneous hierarchical spatiotemporal feature extraction, leading to the development of a modified Video Swin Transformer architecture where temporal down-sampling is synchronized with spatial scaling operations. This modified backbone enables efficient unified processing of long time-series satellite inputs. AgriFM leverages temporally rich data streams from three satellite sources including MODIS, Landsat-8/9 and Sentinel-2, and is pre-trained on a global representative dataset comprising over 25 million image samples supervised by land cover products. The resulting framework incorporates a versatile decoder architecture that dynamically fuses these learned spatiotemporal representations, supporting diverse downstream tasks. Comprehensive evaluations demonstrate AgriFM's superior performance over conventional deep learning approaches and state-of-the-art general-purpose RSFMs across all downstream tasks. Codes will be available at https://github.com/flyakon/AgriFM.

  • 10 authors
·
May 27, 2025

Hierarchical Spatio-Temporal Representation Learning for Gait Recognition

Gait recognition is a biometric technique that identifies individuals by their unique walking styles, which is suitable for unconstrained environments and has a wide range of applications. While current methods focus on exploiting body part-based representations, they often neglect the hierarchical dependencies between local motion patterns. In this paper, we propose a hierarchical spatio-temporal representation learning (HSTL) framework for extracting gait features from coarse to fine. Our framework starts with a hierarchical clustering analysis to recover multi-level body structures from the whole body to local details. Next, an adaptive region-based motion extractor (ARME) is designed to learn region-independent motion features. The proposed HSTL then stacks multiple ARMEs in a top-down manner, with each ARME corresponding to a specific partition level of the hierarchy. An adaptive spatio-temporal pooling (ASTP) module is used to capture gait features at different levels of detail to perform hierarchical feature mapping. Finally, a frame-level temporal aggregation (FTA) module is employed to reduce redundant information in gait sequences through multi-scale temporal downsampling. Extensive experiments on CASIA-B, OUMVLP, GREW, and Gait3D datasets demonstrate that our method outperforms the state-of-the-art while maintaining a reasonable balance between model accuracy and complexity.

  • 4 authors
·
Jul 19, 2023

Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks

Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for image recognition problems. Nevertheless, it is not trivial when utilizing a CNN for learning spatio-temporal video representation. A few studies have shown that performing 3D convolutions is a rewarding approach to capture both spatial and temporal dimensions in videos. However, the development of a very deep 3D CNN from scratch results in expensive computational cost and memory demand. A valid question is why not recycle off-the-shelf 2D networks for a 3D CNN. In this paper, we devise multiple variants of bottleneck building blocks in a residual learning framework by simulating 3times3times3 convolutions with 1times3times3 convolutional filters on spatial domain (equivalent to 2D CNN) plus 3times1times1 convolutions to construct temporal connections on adjacent feature maps in time. Furthermore, we propose a new architecture, named Pseudo-3D Residual Net (P3D ResNet), that exploits all the variants of blocks but composes each in different placement of ResNet, following the philosophy that enhancing structural diversity with going deep could improve the power of neural networks. Our P3D ResNet achieves clear improvements on Sports-1M video classification dataset against 3D CNN and frame-based 2D CNN by 5.3% and 1.8%, respectively. We further examine the generalization performance of video representation produced by our pre-trained P3D ResNet on five different benchmarks and three different tasks, demonstrating superior performances over several state-of-the-art techniques.

  • 3 authors
·
Nov 28, 2017

VT-LVLM-AR: A Video-Temporal Large Vision-Language Model Adapter for Fine-Grained Action Recognition in Long-Term Videos

Human action recognition in long-term videos, characterized by complex backgrounds and subtle action differences, poses significant challenges for traditional deep learning models due to computational overhead, difficulty in capturing long-range temporal dependencies, and limited semantic understanding. While Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) have shown remarkable capabilities in multi-modal understanding and reasoning, their direct application to continuous video streams for fine-grained action recognition remains an open problem. This paper introduces VT-LVLM-AR (Video-Temporal Large Vision-Language Model Adapter for Action Recognition), a novel framework designed to bridge this gap. VT-LVLM-AR comprises a Video-to-Event Mapper (VTEM) that efficiently transforms raw video into compact, semantically rich, and temporally coherent "visual event sequences" through lightweight spatio-temporal feature extraction, adaptive temporal pooling, and conceptual quantization with an event coherence bias. These visual event sequences are then fed into an LVLM-based Action Reasoning module, specifically a frozen LLaVA-1.5 model, adapted using parameter-efficient Prompt Tuning (P-Tuning v2) for action classification. Comprehensive evaluations on the NTU RGB+D and NTU RGB+D 120 datasets demonstrate that VT-LVLM-AR consistently achieves state-of-the-art performance, surpassing existing methods (e.g., 94.1% accuracy on NTU RGB+D X-Sub). Ablation studies confirm the critical contributions of VTEM's components and the efficacy of Prompt Tuning, while human evaluations underscore the interpretability of our visual event representations. This work highlights the immense potential of leveraging LVLMs for robust and interpretable video action understanding through effective video-to-language translation and efficient model adaptation.

  • 3 authors
·
Aug 21, 2025

LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models

The explosive growth of videos on streaming media platforms has underscored the urgent need for effective video quality assessment (VQA) algorithms to monitor and perceptually optimize the quality of streaming videos. However, VQA remains an extremely challenging task due to the diverse video content and the complex spatial and temporal distortions, thus necessitating more advanced methods to address these issues. Nowadays, large multimodal models (LMMs), such as GPT-4V, have exhibited strong capabilities for various visual understanding tasks, motivating us to leverage the powerful multimodal representation ability of LMMs to solve the VQA task. Therefore, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel spatiotemporal visual modeling strategy for quality-aware feature extraction. Specifically, we first reformulate the quality regression problem into a question and answering (Q&A) task and construct Q&A prompts for VQA instruction tuning. Then, we design a spatiotemporal vision encoder to extract spatial and temporal features to represent the quality characteristics of videos, which are subsequently mapped into the language space by the spatiotemporal projector for modality alignment. Finally, the aligned visual tokens and the quality-inquired text tokens are aggregated as inputs for the large language model (LLM) to generate the quality score and level. Extensive experiments demonstrate that LMM-VQA achieves state-of-the-art performance across five VQA benchmarks, exhibiting an average improvement of 5% in generalization ability over existing methods. Furthermore, due to the advanced design of the spatiotemporal encoder and projector, LMM-VQA also performs exceptionally well on general video understanding tasks, further validating its effectiveness. Our code will be released at https://github.com/Sueqk/LMM-VQA.

  • 9 authors
·
Aug 26, 2024