new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 30

Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs

Memory complexity and data scarcity have so far prohibited learning solution operators of partial differential equations (PDEs) at high resolutions. We address these limitations by introducing a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization, called multi-grid tensorized neural operator (MG-TFNO). MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena, through a decomposition of both the input domain and the operator's parameter space. Our contributions are threefold: i) we enable parallelization over input samples with a novel multi-grid-based domain decomposition, ii) we represent the parameters of the model in a high-order latent subspace of the Fourier domain, through a global tensor factorization, resulting in an extreme reduction in the number of parameters and improved generalization, and iii) we propose architectural improvements to the backbone FNO. Our approach can be used in any operator learning setting. We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression. The tensorization combined with the domain decomposition, yields over 150x reduction in the number of parameters and 7x reduction in the domain size without losses in accuracy, while slightly enabling parallelism.

  • 4 authors
·
Sep 29, 2023

Bridging Evolutionary Multiobjective Optimization and GPU Acceleration via Tensorization

Evolutionary multiobjective optimization (EMO) has made significant strides over the past two decades. However, as problem scales and complexities increase, traditional EMO algorithms face substantial performance limitations due to insufficient parallelism and scalability. While most work has focused on algorithm design to address these challenges, little attention has been given to hardware acceleration, thereby leaving a clear gap between EMO algorithms and advanced computing devices, such as GPUs. To bridge the gap, we propose to parallelize EMO algorithms on GPUs via the tensorization methodology. By employing tensorization, the data structures and operations of EMO algorithms are transformed into concise tensor representations, which seamlessly enables automatic utilization of GPU computing. We demonstrate the effectiveness of our approach by applying it to three representative EMO algorithms: NSGA-III, MOEA/D, and HypE. To comprehensively assess our methodology, we introduce a multiobjective robot control benchmark using a GPU-accelerated physics engine. Our experiments show that the tensorized EMO algorithms achieve speedups of up to 1113x compared to their CPU-based counterparts, while maintaining solution quality and effectively scaling population sizes to hundreds of thousands. Furthermore, the tensorized EMO algorithms efficiently tackle complex multiobjective robot control tasks, producing high-quality solutions with diverse behaviors. Source codes are available at https://github.com/EMI-Group/evomo.

  • 5 authors
·
Mar 26, 2025 3

TeRA: Vector-based Random Tensor Network for High-Rank Adaptation of Large Language Models

Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), have significantly reduced the number of trainable parameters needed in fine-tuning large language models (LLMs). Subsequent developments of LoRA-style adapters have diverged into two main directions: (1) enhancing model expressivity with high-rank adapters, and (2) pushing for further parameter reduction, as exemplified by vector-based methods. However, these approaches present a trade-off, as achieving the expressivity of high-rank weight updates typically comes at the cost of sacrificing the extreme parameter efficiency offered by vector-based techniques. To address this issue, we propose a vector-based random \textbf{Te}nsor network for high-\textbf{R}ank \textbf{A}daptation (TeRA), a novel PEFT method that achieves high-rank weight updates while retaining the parameter efficiency of vector-based PEFT adapters. This is achieved by parameterizing the tensorized weight update matrix as a Tucker-like tensor network (TN), in which large randomly initialized factors are frozen and shared across layers, while only small layer-specific scaling vectors, formed by entries in diagonal factor matrices, are trained. This design effectively decouples the rank of the weight update matrix from the number of trainable parameters. Comprehensive experiments demonstrate that TeRA matches or even outperforms high-rank adapters, while requiring a trainable parameter count similar to vector-based methods. Theoretical analysis and ablation studies further validate the effectiveness of our approach.

  • 4 authors
·
Sep 3, 2025

KromHC: Manifold-Constrained Hyper-Connections with Kronecker-Product Residual Matrices

The success of Hyper-Connections (HC) in neural networks (NN) has also highlighted issues related to its training instability and restricted scalability. The Manifold-Constrained Hyper-Connections (mHC) mitigate these challenges by projecting the residual connection space onto a Birkhoff polytope, however, it faces two issues: 1) its iterative Sinkhorn-Knopp (SK) algorithm does not always yield exact doubly stochastic residual matrices; 2) mHC incurs a prohibitive O(n^3C) parameter complexity with n as the width of the residual stream and C as the feature dimension. The recently proposed mHC-lite reparametrizes the residual matrix via the Birkhoff-von-Neumann theorem to guarantee double stochasticity, but also faces a factorial explosion in its parameter complexity, O left( nC cdot n! right). To address both challenges, we propose KromHC, which uses the Kronecker products of smaller doubly stochastic matrices to parametrize the residual matrix in mHC. By enforcing manifold constraints across the factor residual matrices along each mode of the tensorized residual stream, KromHC guarantees exact double stochasticity of the residual matrices while reducing parameter complexity to O(n^2C). Comprehensive experiments demonstrate that KromHC matches or even outperforms state-of-the-art (SOTA) mHC variants, while requiring significantly fewer trainable parameters. The code is available at https://github.com/wz1119/KromHC.

  • 4 authors
·
Jan 29 1