Spaces:
Sleeping
Sleeping
Commit
·
db33294
1
Parent(s):
438af47
Add application file
Browse files- Dockerfile +16 -0
- app.py +126 -0
- requirements.txt +8 -0
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.9
|
| 5 |
+
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . /app
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import io
|
| 7 |
+
import uvicorn
|
| 8 |
+
import tempfile
|
| 9 |
+
import cv2
|
| 10 |
+
|
| 11 |
+
# Initialize FastAPI app
|
| 12 |
+
app = FastAPI(title="Plant Disease Detection API", version="1.0.0")
|
| 13 |
+
|
| 14 |
+
# Add CORS middleware to allow requests from your frontend
|
| 15 |
+
app.add_middleware(
|
| 16 |
+
CORSMiddleware,
|
| 17 |
+
allow_origins=["*"], # In production, replace with your frontend URL
|
| 18 |
+
allow_credentials=True,
|
| 19 |
+
allow_methods=["*"],
|
| 20 |
+
allow_headers=["*"],
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# Load your model
|
| 24 |
+
model = tf.keras.models.load_model('trained_modela.keras')
|
| 25 |
+
|
| 26 |
+
# Define your class names (update with your actual classes)
|
| 27 |
+
class_name = ['Apple___Apple_scab',
|
| 28 |
+
'Apple___Black_rot',
|
| 29 |
+
'Apple___Cedar_apple_rust',
|
| 30 |
+
'Apple___healthy',
|
| 31 |
+
'Blueberry___healthy',
|
| 32 |
+
'Cherry_(including_sour)___Powdery_mildew',
|
| 33 |
+
'Cherry_(including_sour)___healthy',
|
| 34 |
+
'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot',
|
| 35 |
+
'Corn_(maize)___Common_rust_',
|
| 36 |
+
'Corn_(maize)___Northern_Leaf_Blight',
|
| 37 |
+
'Corn_(maize)___healthy',
|
| 38 |
+
'Grape___Black_rot',
|
| 39 |
+
'Grape___Esca_(Black_Measles)',
|
| 40 |
+
'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
|
| 41 |
+
'Grape___healthy',
|
| 42 |
+
'Orange___Haunglongbing_(Citrus_greening)',
|
| 43 |
+
'Peach___Bacterial_spot',
|
| 44 |
+
'Peach___healthy',
|
| 45 |
+
'Pepper,_bell___Bacterial_spot',
|
| 46 |
+
'Pepper,_bell___healthy',
|
| 47 |
+
'Potato___Early_blight',
|
| 48 |
+
'Potato___Late_blight',
|
| 49 |
+
'Potato___healthy',
|
| 50 |
+
'Raspberry___healthy',
|
| 51 |
+
'Soybean___healthy',
|
| 52 |
+
'Squash___Powdery_mildew',
|
| 53 |
+
'Strawberry___Leaf_scorch',
|
| 54 |
+
'Strawberry___healthy',
|
| 55 |
+
'Tomato___Bacterial_spot',
|
| 56 |
+
'Tomato___Early_blight',
|
| 57 |
+
'Tomato___Late_blight',
|
| 58 |
+
'Tomato___Leaf_Mold',
|
| 59 |
+
'Tomato___Septoria_leaf_spot',
|
| 60 |
+
'Tomato___Spider_mites Two-spotted_spider_mite',
|
| 61 |
+
'Tomato___Target_Spot',
|
| 62 |
+
'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
|
| 63 |
+
'Tomato___Tomato_mosaic_virus',
|
| 64 |
+
'Tomato___healthy']
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@app.get("/")
|
| 68 |
+
async def root():
|
| 69 |
+
return {"message": "Plant Disease Detection API", "version": "1.0.0"}
|
| 70 |
+
|
| 71 |
+
@app.post("/predict")
|
| 72 |
+
async def predict_disease(file: UploadFile = File(...)):
|
| 73 |
+
"""
|
| 74 |
+
Predict plant disease from uploaded image
|
| 75 |
+
"""
|
| 76 |
+
try:
|
| 77 |
+
# Validate file type
|
| 78 |
+
# Validate file type
|
| 79 |
+
if not file.content_type.startswith('image/'):
|
| 80 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 81 |
+
|
| 82 |
+
# Save uploaded file temporarily
|
| 83 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp:
|
| 84 |
+
temp_path = tmp.name
|
| 85 |
+
contents = await file.read()
|
| 86 |
+
tmp.write(contents)
|
| 87 |
+
|
| 88 |
+
# Read image using OpenCV
|
| 89 |
+
img = cv2.imread(temp_path)
|
| 90 |
+
if img is None:
|
| 91 |
+
raise HTTPException(status_code=400, detail="Invalid image file")
|
| 92 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 93 |
+
|
| 94 |
+
image = tf.keras.preprocessing.image.load_img(temp_path,target_size=(128, 128))
|
| 95 |
+
|
| 96 |
+
input_arr = tf.keras.preprocessing.image.img_to_array(image)
|
| 97 |
+
input_arr = np.array([input_arr]) # Convert single image to batch
|
| 98 |
+
|
| 99 |
+
# Predict
|
| 100 |
+
prediction = model.predict(input_arr)
|
| 101 |
+
result_index = np.argmax(prediction)
|
| 102 |
+
confidence = prediction[0][result_index]
|
| 103 |
+
disease_name = class_name[result_index]
|
| 104 |
+
|
| 105 |
+
return {
|
| 106 |
+
"success": True,
|
| 107 |
+
"disease": disease_name,
|
| 108 |
+
"confidence": confidence
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
except HTTPException as he:
|
| 112 |
+
raise he
|
| 113 |
+
except Exception as e:
|
| 114 |
+
raise HTTPException(status_code=500, detail=f"Prediction error: {str(e)}")
|
| 115 |
+
|
| 116 |
+
@app.get("/health")
|
| 117 |
+
async def health_check():
|
| 118 |
+
return {"status": "healthy"}
|
| 119 |
+
|
| 120 |
+
@app.get("/classes")
|
| 121 |
+
async def get_classes():
|
| 122 |
+
"""Get all available disease classes"""
|
| 123 |
+
return {"classes": class_name}
|
| 124 |
+
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorFlow == 2.19.0
|
| 2 |
+
numpy>=1.26.0,<2.2.0
|
| 3 |
+
gradio == 5.44.1
|
| 4 |
+
pillow == 10.4.0
|
| 5 |
+
requests == 2.32.3
|
| 6 |
+
opencv-python-headless == 4.12.0.88
|
| 7 |
+
fastapi==0.116.1
|
| 8 |
+
uvicorn==0.35.0
|