KitFinalAssignment / agent.py
kit086
refactor: 调整 vectordb 位 faiss 并更新依赖
807eac7
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document
import shutil
import pandas as pd # Ny import för pandas
import json # För att parsa metadata-kolumnen
load_dotenv()
# Tools:
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# Retrieval
INDEX_DIR = "./faiss_index"
CSV_PATH = "./supabase_docs.csv"
# Use a lightweight 384-dim model to avoid excessive RAM and potential onnxruntime crashes
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
_SIMILARITY_THRESHOLD = 0.2 # lower distance means more similar
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL, model_kwargs={"device": "cpu"})
if os.path.exists(INDEX_DIR):
print(f"Loading existing FAISS index from {INDEX_DIR}")
vector_store = FAISS.load_local(INDEX_DIR, embeddings, allow_dangerous_deserialization=True)
else:
print(f"Creating new FAISS index at {INDEX_DIR}, and loading documents from {CSV_PATH}")
if os.path.exists(INDEX_DIR):
shutil.rmtree(INDEX_DIR)
os.makedirs(INDEX_DIR)
if not os.path.exists(CSV_PATH):
raise FileNotFoundError(f"CSV file {CSV_PATH} does not exist")
df = pd.read_csv(CSV_PATH)
documents = []
for i, row in df.iterrows():
content = row["content"]
question_part = content.split("Final answer :")[0].strip()
final_answer_part = content.split("Final answer :")[-1].strip() if "Final answer :" in content else ""
try:
metadata = json.loads(row["metadata"].replace("'", '"'))
except json.JSONDecodeError:
metadata = {}
metadata["final_answer"] = final_answer_part
documents.append(Document(page_content=question_part, metadata=metadata))
# Simple progress indicator every 200 docs
if (i + 1) % 200 == 0:
print(f"Prepared {i + 1}/{len(df)} documents for embedding…")
if not documents:
print("No documents loaded from CSV. FAISS index will be empty.")
vector_store = FAISS.from_documents(documents=[], embedding=embeddings)
vector_store.save_local(INDEX_DIR)
else:
print("Embedding documents and building FAISS index — this may take a few minutes…")
vector_store = FAISS.from_documents(documents=documents, embedding=embeddings)
vector_store.save_local(INDEX_DIR)
print(f"FAISS index built and saved with {len(documents)} documents from CSV.")
# Retriever tool
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question_Search",
description="Retrieve similar questions from FAISS index; metadata includes 'final_answer'."
)
# Agent
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
retriever_tool,
]
def build_graph_agent():
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0.0,
)
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
return {
"messages": [llm_with_tools.invoke(state["messages"])],
}
def retriever(state: MessagesState):
query = state["messages"][-1].content
similar_docs = vector_store.similarity_search(query, k=3)
if similar_docs:
similar_doc = similar_docs[0]
if "final_answer" in similar_doc.metadata and similar_doc.metadata["final_answer"]:
answer = similar_doc.metadata["final_answer"]
elif "Final answer :" in similar_doc.page_content:
answer = similar_doc.page_content.split("Final answer :")[-1].strip()
else:
answer = similar_doc.page_content.strip()
return {"messages": [AIMessage(content=answer)]}
else:
return {"messages": [AIMessage(content="No similar questions found in the knowledge base.")]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.set_entry_point("retriever")
builder.set_finish_point("retriever")
return builder.compile()