Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| bug |
|
| non-bug |
|
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Switch Framer and Deframer to use Mallocator Pattern
| | |
|:---|:---|
|**_F´ Version_**| |
|**_Affected Component_**| |
---
## Problem Description
Mallocator pattern is preferred over member-allocated buffers.")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 4 | 124.1383 | 2486 |
| Label | Training Sample Count |
|---|---|
| bug | 296 |
| non-bug | 304 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0007 | 1 | 0.447 | - |
| 0.0333 | 50 | 0.2333 | - |
| 0.0667 | 100 | 0.083 | - |
| 0.1 | 150 | 0.039 | - |
| 0.1333 | 200 | 0.0354 | - |
| 0.1667 | 250 | 0.0177 | - |
| 0.2 | 300 | 0.0053 | - |
| 0.2333 | 350 | 0.0004 | - |
| 0.2667 | 400 | 0.0027 | - |
| 0.3 | 450 | 0.0015 | - |
| 0.3333 | 500 | 0.002 | - |
| 0.3667 | 550 | 0.0003 | - |
| 0.4 | 600 | 0.0001 | - |
| 0.4333 | 650 | 0.0001 | - |
| 0.4667 | 700 | 0.0001 | - |
| 0.5 | 750 | 0.0001 | - |
| 0.5333 | 800 | 0.0001 | - |
| 0.5667 | 850 | 0.0001 | - |
| 0.6 | 900 | 0.0001 | - |
| 0.6333 | 950 | 0.0001 | - |
| 0.6667 | 1000 | 0.0001 | - |
| 0.7 | 1050 | 0.0 | - |
| 0.7333 | 1100 | 0.0 | - |
| 0.7667 | 1150 | 0.0001 | - |
| 0.8 | 1200 | 0.0 | - |
| 0.8333 | 1250 | 0.0001 | - |
| 0.8667 | 1300 | 0.0 | - |
| 0.9 | 1350 | 0.0 | - |
| 0.9333 | 1400 | 0.0001 | - |
| 0.9667 | 1450 | 0.0 | - |
| 1.0 | 1500 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}