MiniMax-M2.1-NVFP4
NVFP4 quantized version of MiniMaxAI/MiniMax-M2.1 for efficient inference on NVIDIA Blackwell GPUs.
Model Details
| Property | Value |
|---|---|
| Base Model | MiniMaxAI/MiniMax-M2.1 |
| Architecture | Mixture of Experts (MoE) |
| Total Parameters | 229B |
| Active Parameters | ~45B (8 of 256 experts) |
| Quantization | NVFP4 (e2m1 format) |
| Size | 131 GB |
Quantization Details
- Format: NVFP4 with two-level scaling (block-wise FP8 + global FP32)
- Scheme:
compressed-tensorswithnvfp4-pack-quantizedformat - Target: All linear layers in attention and MoE experts
- Group Size: 16
Requirements
- NVIDIA Blackwell GPU (RTX 5090, RTX PRO 6000, etc.)
- vLLM with flashinfer-cutlass NVFP4 support
- ~130 GB VRAM (TP=2 recommended for dual GPU setups)
Usage with vLLM
from vllm import LLM, SamplingParams
llm = LLM(
model="GadflyII/MiniMax-M2.1-NVFP4",
tensor_parallel_size=2,
max_model_len=4096,
gpu_memory_utilization=0.90,
trust_remote_code=True,
)
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=1024,
)
outputs = llm.generate(["Your prompt here"], sampling_params)
print(outputs[0].outputs[0].text)
Performance
Tested on 2x RTX PRO 6000 Blackwell (98GB each):
| Prompt Tokens | Output Tokens | Throughput |
|---|---|---|
| ~100 | 100 | ~73 tok/s |
| ~1260 | 1000 | ~72 tok/s |
License
Same as base model - see MiniMaxAI/MiniMax-M2.1 for details.
Acknowledgments
- Downloads last month
- 29
Model tree for GadflyII/MiniMax-M2.1-NVFP4
Base model
MiniMaxAI/MiniMax-M2.1