SentenceTransformer based on Qwen/Qwen3-Embedding-8B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-8B. It maps sentences & paragraphs to a 4096-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-8B
- Maximum Sequence Length: 40960 tokens
- Output Dimensionality: 4096 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 40960, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("JacobLinCool/Qwen3-Embedding-8B-GIR-1")
queries = [
"Generates samples of text from the provided vocabulary.\n\n Args:\n plain_vocab: vocabulary.\n distribution: distribution.\n train_samples: samples for training.\n length: length.\n\n Returns:\n train_indices (np.array of Integers): random integers for training.\n shape = [num_samples, length]\n test_indices (np.array of Integers): random integers for testing.\n shape = [num_samples, length]\n plain_vocab (list of Integers): unique vocabularies.",
]
documents = [
'def generate_plaintext_random(plain_vocab, distribution, train_samples,\n length):\n \n if distribution is not None:\n assert len(distribution) == len(plain_vocab)\n\n train_indices = np.random.choice(\n range(len(plain_vocab)), (train_samples, length), p=distribution)\n\n return train_indices',
'def switch(self, name):\n \n try:\n switch = self.storage[self.__namespaced(name)]\n except KeyError:\n if not self.autocreate:\n raise ValueError("No switch named registered in " % (name, self.namespace))\n\n switch = self.__create_and_register_disabled_switch(name)\n\n switch.manager = self\n return switch',
'def late_filling(target, pressure=,\n Pc_star=,\n Swp_star=0.2, eta=3):\n r\n element = pressure.split()[0]\n network = target.project.network\n phase = target.project.find_phase(target)\n pc_star = phase[Pc_star]\n Pc = phase[pressure]\n \n Ts = network.map_throats(throats=target.Ts, origin=target)\n values = values[Ts]\n else:\n Ps = network.map_pores(pores=target.Ps, origin=target)\n values = values[Ps]\n return values',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.99 |
| cosine_accuracy@5 |
1.0 |
| cosine_accuracy@10 |
1.0 |
| cosine_precision@1 |
0.99 |
| cosine_precision@3 |
0.3333 |
| cosine_precision@5 |
0.2 |
| cosine_precision@10 |
0.1 |
| cosine_recall@1 |
0.99 |
| cosine_recall@3 |
1.0 |
| cosine_recall@5 |
1.0 |
| cosine_recall@10 |
1.0 |
| cosine_ndcg@1 |
0.99 |
| cosine_ndcg@5 |
0.9963 |
| cosine_ndcg@10 |
0.9963 |
| cosine_mrr@1 |
0.99 |
| cosine_mrr@5 |
0.995 |
| cosine_mrr@10 |
0.995 |
| cosine_map@100 |
0.995 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 400 training samples
- Columns:
query and code
- Approximate statistics based on the first 400 samples:
|
query |
code |
| type |
string |
string |
| details |
- min: 2 tokens
- mean: 67.12 tokens
- max: 3156 tokens
|
- min: 24 tokens
- mean: 126.98 tokens
- max: 1236 tokens
|
- Samples:
| query |
code |
For memory actions, get a list of addresses it operates on.
:param SimAction action: The action object to work with. :return: A list of addresses that are accessed with that action. :rtype: list |
def _get_actual_addrs(action, state):
if action.actual_addrs is None: addr_list = {0x60000000} else: addr_list = set(action.actual_addrs)
return addr_list |
Construct the input file of the calculation. |
def make_input(self, with_header=False): s = str(self.input) if with_header: s = str(self) + "\n" + s return s |
Check worker status route |
def check_worker_status(): if not in request.args: resp = {"status": "bad request"} return jsonify(**resp) else: worker_id = request.args[] assignment_id = request.args[] allow_repeats = CONFIG.getboolean(, ) if allow_repeats: try: part = Participant.query.<br> filter(Participant.workerid == worker_id).<br> filter(Participant.assignmentid == assignment_id).one() status = part.status except exc.SQLAlchemyError: status = NOT_ACCEPTED else: try: matches = Participant.query.<br> filter(Participant.workerid == worker_id).all() numrecs = len(matches) if numrecs==0: status = NOT_ACCEPTED else: status = max([record.status for record in matches]) except exc.SQLAlchemyError: ... |
- Loss:
CachedMultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 1,
"gather_across_devices": false
}
Evaluation Dataset
Unnamed Dataset
- Size: 100 evaluation samples
- Columns:
query and code
- Approximate statistics based on the first 100 samples:
|
query |
code |
| type |
string |
string |
| details |
- min: 5 tokens
- mean: 66.56 tokens
- max: 548 tokens
|
- min: 24 tokens
- mean: 142.11 tokens
- max: 901 tokens
|
- Samples:
| query |
code |
Return the value of the android prefixed attribute in a specific tag.
This function will always try to get the attribute with a android: prefix first, and will try to return the attribute without the prefix, if the attribute could not be found. This is useful for some broken AndroidManifest.xml, where no android namespace is set, but could also indicate malicious activity (i.e. wrongly repackaged files). A warning is printed if the attribute is found without a namespace prefix.
If you require to get the exact result you need to query the tag directly:
example:: >>> from lxml.etree import Element >>> tag = Element('bar', nsmap={'android': 'http://schemas.android.com/apk/res/android'}) >>> tag.set('{http://schemas.android.com/apk/res/android}foobar', 'barfoo') >>> tag.set('name', 'baz') # Assume that a is some APK object >>> a.get_value_from_tag(tag, 'name'... |
def get_value_from_tag(self, tag, attribute):
value = tag.get(self._ns(attribute)) if value is None: value = tag.get(attribute)
if value: log.warning("Failed to get the attribute on tag with namespace. " "But found the same attribute without namespace!".format(attribute, tag.tag)) return value |
Get information about this object as a dictionary. Used by WebSocket interface to pass some relevant information to client applications. |
def get_as_datadict(self): return dict(type=self.class.name, tags=list(self.tags)) |
Makes forecast with the estimated model
Parameters ---------- h : int (default : 5) How many steps ahead would you like to forecast?
past_values : int (default : 20) How many past observations to show on the forecast graph?
intervals : Boolean Would you like to show 95% prediction intervals for the forecast?
Returns ---------- - Plot of the forecast |
def plot_predict(self,h=5,past_values=20,intervals=True,**kwargs): import matplotlib.pyplot as plt import seaborn as sns
figsize = kwargs.get(,(10,7))
if self.latent_variables.estimated is False: raise Exception("No latent variables estimated!") else: scale, shape, skewness = self._get_scale_and_shape(self.latent_variables.get_z_values(transformed=True)) previous_value = self.data[-1] forecasted_values = np.ones(h)*self.states[-1] date_index = self.shift_dates(h) simulations = 10000 sim_vector = np.zeros([simulations,h]) t_params = self.transform_z()
for n in range(0,simulations): rnd_q = np.random.normal(0,np.sqrt(self.latent_variables.get_z_values(transformed=True)[0]),h) exp = forecasted_values.copy()
for t in range(0,h): if t == 0:... |
- Loss:
CachedMultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 1,
"gather_across_devices": false
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
learning_rate: 2e-05
num_train_epochs: 5
warmup_ratio: 0.1
seed: 2025
bf16: True
load_best_model_at_end: True
optim: paged_adamw_8bit
push_to_hub: True
hub_model_id: JacobLinCool/Qwen3-Embedding-8B-GIR-1
hub_private_repo: False
gradient_checkpointing: True
eval_on_start: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 2025
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: paged_adamw_8bit
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: JacobLinCool/Qwen3-Embedding-8B-GIR-1
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
hub_revision: None
gradient_checkpointing: True
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: True
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Validation Loss |
cosine_ndcg@10 |
| 0 |
0 |
0.0559 |
0.9926 |
| 1.0 |
7 |
0.0370 |
0.9963 |
| 2.0 |
14 |
0.0319 |
0.9963 |
| 3.0 |
21 |
0.0312 |
0.9963 |
| 4.0 |
28 |
0.0312 |
0.9963 |
| 5.0 |
35 |
0.0313 |
0.9963 |
| -1 |
-1 |
- |
0.9963 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}