Visual-Reasoning / sequence /data_generation.py
Jayce-Ping's picture
Add files using upload-large-folder tool
7cdb0ca verified
"""
Sequence Prediction Dataset Generator.
Generates image pairs for sequence prediction tasks with various
mathematical sequences (arithmetic, geometric, fibonacci, etc.)
"""
import json
import random
from pathlib import Path
from typing import Callable
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# ============== Sequence Generators ==============
def arithmetic_seq(start: int, diff: int, length: int = 4) -> list[int]:
"""Arithmetic sequence: a, a+d, a+2d, ..."""
return [start + i * diff for i in range(length)]
def geometric_seq(start: int, ratio: int, length: int = 4) -> list[int]:
"""Geometric sequence: a, a*r, a*r^2, ..."""
return [start * (ratio ** i) for i in range(length)]
def square_seq(start: int, length: int = 4) -> list[int]:
"""Square numbers: n^2, (n+1)^2, ..."""
return [(start + i) ** 2 for i in range(length)]
def cube_seq(start: int, length: int = 4) -> list[int]:
"""Cube numbers: n^3, (n+1)^3, ..."""
return [(start + i) ** 3 for i in range(length)]
def triangular_seq(start: int, length: int = 4) -> list[int]:
"""Triangular numbers: n(n+1)/2"""
return [(start + i) * (start + i + 1) // 2 for i in range(length)]
def fibonacci_like_seq(a: int, b: int, length: int = 4) -> list[int]:
"""Fibonacci-like: a, b, a+b, a+2b, ..."""
seq = [a, b]
for _ in range(length - 2):
seq.append(seq[-1] + seq[-2])
return seq[:length]
def prime_seq(start_idx: int, length: int = 4) -> list[int]:
"""Prime numbers starting from index."""
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
return primes[start_idx:start_idx + length]
def power_of_two_seq(start: int, length: int = 4) -> list[int]:
"""Powers of 2: 2^n, 2^(n+1), ..."""
return [2 ** (start + i) for i in range(length)]
def factorial_seq(start: int, length: int = 4) -> list[int]:
"""Factorial sequence: n!, (n+1)!, ..."""
from math import factorial
return [factorial(start + i) for i in range(length)]
# ============== Sequence Factory ==============
SEQUENCE_TYPES = {
"arithmetic": lambda rng: arithmetic_seq(
rng.randint(1, 20), rng.randint(1, 10)
),
"arithmetic_neg": lambda rng: arithmetic_seq(
rng.randint(20, 50), -rng.randint(1, 5)
),
"geometric_2": lambda rng: geometric_seq(
rng.randint(1, 5), 2
),
"geometric_3": lambda rng: geometric_seq(
rng.randint(1, 3), 3
),
"square": lambda rng: square_seq(rng.randint(1, 10)),
"cube": lambda rng: cube_seq(rng.randint(1, 5)),
"triangular": lambda rng: triangular_seq(rng.randint(1, 10)),
"fibonacci": lambda rng: fibonacci_like_seq(
rng.randint(1, 5), rng.randint(1, 5)
),
"prime": lambda rng: prime_seq(rng.randint(0, 10)),
"power_of_2": lambda rng: power_of_two_seq(rng.randint(0, 6)),
}
def generate_sequence_pair(seq: list[int]) -> tuple[list, list]:
"""
Generate a pair of sequences for the task.
Returns:
(partial, complete): partial has last element as "", complete is full.
"""
partial = seq[:-1] + [""]
return partial, seq
# ============== Image Generation ==============
def round_to_multiple(x: int, multiple: int = 16) -> int:
"""Round x up to nearest multiple."""
return ((x + multiple - 1) // multiple) * multiple
def create_number_grid(
numbers: list,
save_path: str,
height: int = 224,
width: int = 896,
fontsize: int = 48,
size_multiple: int = 16,
) -> None:
"""
Create a 1xN grid image with numbers in each cell.
Args:
numbers: List of numbers/strings to display.
save_path: Output file path.
height: Target height in pixels (will be rounded to size_multiple).
width: Target width in pixels (will be rounded to size_multiple).
fontsize: Font size for the numbers.
size_multiple: Ensure dimensions are multiples of this (default 16).
"""
from PIL import Image
n = len(numbers)
# Ensure dimensions are multiples of size_multiple
width = round_to_multiple(width, size_multiple)
height = round_to_multiple(height, size_multiple)
# Use fixed DPI and calculate figsize
dpi = 100
fig_width = width / dpi
fig_height = height / dpi
fig, ax = plt.subplots(figsize=(fig_width, fig_height), dpi=dpi)
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
for i, num in enumerate(numbers):
rect = patches.Rectangle(
(i, 0), 1, 1, linewidth=2,
edgecolor='black', facecolor='white'
)
ax.add_patch(rect)
ax.text(
i + 0.5, 0.5, str(num), fontsize=fontsize,
ha='center', va='center', fontweight='bold'
)
ax.set_xlim(0, n)
ax.set_ylim(0, 1)
ax.set_aspect('equal')
ax.axis('off')
# Save with exact pixel dimensions
fig.savefig(save_path, dpi=dpi, facecolor='white', edgecolor='none')
plt.close(fig)
# Final resize to ensure exact dimensions (16 multiples)
img = Image.open(save_path)
if img.size != (width, height):
img = img.resize((width, height), Image.Resampling.LANCZOS)
img.save(save_path)
# ============== Dataset Generation ==============
class SequenceDatasetGenerator:
"""Generate sequence prediction dataset with train/test splits."""
def __init__(
self,
output_dir: str,
seed: int = 42,
num_pairs: tuple[int, int] = (2, 3),
seq_types: list[str] | None = None,
image_height: int = 224,
image_width: int = 896,
fontsize: int = 48,
):
"""
Args:
output_dir: Directory to save the dataset.
seed: Random seed for reproducibility.
num_pairs: Range of pairs per sample (min, max inclusive).
seq_types: List of sequence types to use (None = all).
image_height: Image height in pixels (rounded to 16).
image_width: Image width in pixels (rounded to 16).
fontsize: Font size for numbers.
"""
self.output_dir = Path(output_dir)
self.rng = random.Random(seed)
self.num_pairs = num_pairs
self.seq_types = seq_types or list(SEQUENCE_TYPES.keys())
self.image_height = round_to_multiple(image_height, 16)
self.image_width = round_to_multiple(image_width, 16)
self.fontsize = fontsize
# Create directories
for split in ["train", "test"]:
(self.output_dir / split / "images").mkdir(parents=True, exist_ok=True)
def _generate_sample(self, sample_id: int) -> dict:
"""Generate a single sample with multiple sequence pairs."""
num_pairs = self.rng.randint(*self.num_pairs)
seq_type = self.rng.choice(self.seq_types)
# Generate base sequence and subsequent ones
base_seq = SEQUENCE_TYPES[seq_type](self.rng)
pairs = []
for i in range(num_pairs):
# Shift sequence for each pair
if seq_type.startswith("arithmetic"):
diff = base_seq[1] - base_seq[0]
seq = [x + i * diff for x in base_seq]
elif seq_type.startswith("geometric"):
ratio = base_seq[1] // base_seq[0] if base_seq[0] != 0 else 2
seq = [x * (ratio ** i) for x in base_seq]
else:
# For other types, regenerate with offset
seq = [x + i for x in base_seq]
partial, complete = generate_sequence_pair(seq)
pairs.append({
"partial": partial,
"complete": complete,
"answer": complete[-1],
})
return {
"id": sample_id,
"seq_type": seq_type,
"num_pairs": num_pairs,
"pairs": pairs,
}
def _save_sample_images(
self, sample: dict, split: str, include_last_answer: bool = True
) -> dict:
"""Save images for a sample and return metadata."""
sample_id = sample["id"]
image_dir = self.output_dir / split / "images"
images = []
img_idx = 0
for i, pair in enumerate(sample["pairs"]):
# Always save partial (query) image
partial_path = f"{sample_id:05d}_{img_idx}.png"
create_number_grid(
pair["partial"], image_dir / partial_path,
height=self.image_height, width=self.image_width,
fontsize=self.fontsize,
)
images.append(partial_path)
img_idx += 1
# Save complete image based on split logic
is_last = (i == sample["num_pairs"] - 1)
if include_last_answer or not is_last:
complete_path = f"{sample_id:05d}_{img_idx}.png"
create_number_grid(
pair["complete"], image_dir / complete_path,
height=self.image_height, width=self.image_width,
fontsize=self.fontsize,
)
images.append(complete_path)
img_idx += 1
return {
"id": sample_id,
"seq_type": sample["seq_type"],
"num_pairs": sample["num_pairs"],
"images": images,
"answer": sample["pairs"][-1]["answer"], # Last image's answer
"sequences": [p["complete"] for p in sample["pairs"]],
}
def generate(self, num_train: int, num_test: int) -> None:
"""
Generate the full dataset.
Args:
num_train: Number of training samples.
num_test: Number of test samples.
"""
train_meta, test_meta = [], []
# Generate training samples (all pairs complete)
print(f"Generating {num_train} training samples...")
for i in range(num_train):
sample = self._generate_sample(i)
meta = self._save_sample_images(sample, "train", include_last_answer=True)
train_meta.append(meta)
if (i + 1) % 50 == 0:
print(f" Train: {i + 1}/{num_train}")
# Generate test samples (last answer hidden)
print(f"Generating {num_test} test samples...")
for i in range(num_test):
sample = self._generate_sample(num_train + i)
meta = self._save_sample_images(sample, "test", include_last_answer=False)
test_meta.append(meta)
if (i + 1) % 50 == 0:
print(f" Test: {i + 1}/{num_test}")
# Save metadata
with open(self.output_dir / "train.json", "w") as f:
json.dump(train_meta, f, indent=2)
with open(self.output_dir / "test.json", "w") as f:
json.dump(test_meta, f, indent=2)
print(f"\nDataset saved to {self.output_dir}")
print(f" Train: {num_train} samples")
print(f" Test: {num_test} samples")
print(f" Image size: {self.image_width}x{self.image_height}")
print(f" Sequence types: {self.seq_types}")
if __name__ == "__main__":
generator = SequenceDatasetGenerator(
output_dir="/home/claude/sequence_dataset",
seed=42,
num_pairs=(2, 3),
)
generator.generate(num_train=100, num_test=20)