Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l-v2.0. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Jrinky/snowflake")
# Run inference
sentences = [
'Why is it important to keep moving over the summer',
"It's important to keep moving over the summer!",
'2008. CHENG HF, LEE YM, Chu CH, Leung WK & Mok TMY. - Journal Editor (Hong Kong Medical Journal) 2008\n- Editor-in-Chief (Hong Kong Dental Journal) 2007\n- Editor-in-Chief (Hong Kong Dental Journal) 2006\n- Deputy Editor (Hong Kong Dental Journal) 2004',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
What might have been unnecessary if better emergency plans had been implemented |
If better emergency plans had been in place, maybe chemical dipersants wouldn't be needed. And on and on. |
What was the year of publication for the 3rd Edition of 'Regular Polytopes' by H.S.M. Coxeter |
Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973 |
Who is the author of the GURPS Shapeshifters supplement |
GURPS Shapeshifters () is a supplement by Robert M. Schroeck for the GURPS role-playing game system, third edition. |
selfloss.Infonce with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
What impressive achievements did the Warriors accomplish during their last season in Division III |
The Warriors were among the most lethal offensive teams in Division III this past year, posting a team batting average of .344 and averaging nearly seven runs per game, smacking 29 home runs, and collecting nearly 600 total bases. They shared the Little East Conference regular-season championship and later knocked off the top seed in the NCAA regional tournament (Montclair State) en route to their winningest season in 14 years. |
How many bars had nectar and capped honey on them |
Eight of the bars had nectar and capped honey on them. There are eighteen bars with brood in some form on them and a mix of workers and drones. |
What idea is being requested regarding the 'triangle' |
Next up...the "triangle". Please, seriously, if anyone could float me an idea, I would really appreciate it. |
selfloss.Infonce with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 3per_device_eval_batch_size: 3learning_rate: 5e-06num_train_epochs: 5warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 3per_device_eval_batch_size: 3per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-06weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0777 | 150 | 0.0257 | 0.0134 |
| 0.1554 | 300 | 0.0136 | 0.0082 |
| 0.2332 | 450 | 0.0079 | 0.0062 |
| 0.3109 | 600 | 0.0065 | 0.0051 |
| 0.3886 | 750 | 0.0059 | 0.0045 |
| 0.4663 | 900 | 0.0057 | 0.0040 |
| 0.5440 | 1050 | 0.0064 | 0.0037 |
| 0.6218 | 1200 | 0.005 | 0.0034 |
| 0.6995 | 1350 | 0.0052 | 0.0034 |
| 0.7772 | 1500 | 0.0041 | 0.0032 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Snowflake/snowflake-arctic-embed-l-v2.0