DINOv3
Paper
•
2508.10104
•
Published
•
291
CoreML conversion of facebook/dinov3-vits16-pretrain-lvd1689m optimized for Apple Silicon.
import coremltools as ct
import numpy as np
from PIL import Image
# Load model
model = ct.models.MLModel("dinov3_vits16_224x224_int8.mlpackage")
# Prepare image
image = Image.open("image.jpg").resize((224, 224))
# Extract features
output = model.predict({"image": image})
features = output["features"] # Shape: [1, embed_dim, grid_size, grid_size]
import CoreML
// Load model
guard let model = try? MLModel(contentsOf: modelURL) else {
fatalError("Failed to load model")
}
// Prepare image
guard let image = UIImage(named: "image.jpg") else {
fatalError("Failed to load image")
}
// Extract features
let input = try MLFeatureValue(image: image.cgImage!)
let output = try model.prediction(from: [input])
let features = output.featureValue(for: "features")?.multiArrayValue
Performance metrics on Apple Silicon:
This model is released under the DINOv3 License. See LICENSE.md for details.
@article{dinov3,
title={DINOv3: A Versatile Vision Foundation Model},
author={Meta AI Research},
journal={arXiv preprint arXiv:2508.10104},
year={2025}
}
Reference: DINOv3 Paper
Key contributions:
The visualization shows:
This comprehensive visualization demonstrates that CoreML conversion preserves the semantic structure and feature quality of the original DINOv3 model.
🌟 This model is powered by DINOv3 🌟
Converted by Aegis AI for optimized Apple Silicon deployment.
Last updated: 2025-11-03