Status / Important
This is an MLX conversion artifact of TomoroAI/tomoro-colqwen3-embed-8b.
โ ๏ธ Note: Using this model currently requires a version of mlx-vlm that includes colqwen3 support
(PR pending upstream). Until the PR is merged, you must use a fork/branch of mlx-vlm with the changes.
How to use (temporary)
pip uninstall -y mlx-vlm
pip install --upgrade "git+https://github.com/bulutyigit/mlx-vlm.git@add-colqwen3-embed"
from PIL import Image
from mlx_vlm import load
model, processor = load(
"bulutyigit/tomoro-colqwen3-embed-8b-mlx-4bit",
trust_remote_code=True,
)
queries = ["image of a dog", "image of Beijing"]
q_embs = model.encode_queries(processor, queries)
imgs = [
Image.open("page_patch_0.png").convert("RGB"),
Image.open("page_patch_1.png").convert("RGB"),
]
d_embs = model.encode_images(processor, imgs)
score = model.maxsim(q_embs[0], d_embs[0])
print("MaxSim:", float(score))
Tomoro ColQwen3 Embed 8B โ MLX 4-bit
Converted from TomoroAI/tomoro-colqwen3-embed-8b to MLX and quantized to 4-bit using mlx-vlm.
Original Model Card: https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-8b
Convert command
mlx_vlm.convert \
--hf-path TomoroAI/tomoro-colqwen3-embed-8b \
--mlx-path ./tomoro-colqwen3-embed-8b-4bit-mlx \
--quantize --q-bits 4
- Downloads last month
- 89
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for bulutyigit/tomoro-colqwen3-embed-8b-mlx-4bit
Base model
Qwen/Qwen3-VL-8B-Instruct
Finetuned
TomoroAI/tomoro-colqwen3-embed-8b