YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

I chose two small, recent and different MoE models that fits my vram for a quick assessment.

I wanted to use MoE models to check on MXFP4 and imatrix to check on the smallest quantization variants.

  • LFM2-8B-A1B that has 4 experts used out of 32.

  • OLMoE-1B-7B-0924-Instruct that has 8 experts used out of 64.


Conclusion:

While MXFP4 is highly efficient for LFM2-8B, it underperforms on OLMoE-1B-7B. LFM2-8B-A1B at Q8_0, Q5_0 and MXFP4 have lower PPL than BF16 likely due to the imatrix optimization and/or overtraining of the model.

pareto


LFM2-8B-A1B

Quant Type PPL Size (MiB) BPW Prompt (t/s) Gen (t/s)
BF16 15.2248 15910.31 16.00 OOM OOM
Q8_0 15.1931 8455.31 8.50 5072.10 162.41
Q6_K 15.5124 6529.44 6.57 4436.58 175.56
Q5_1 15.4030 5979.31 6.01 4625.45 209.11
Q5_K_M 16.0200 5643.04 5.68 4584.63 200.70
Q5_0 14.8000 5499.06 5.53 4874.52 216.30
Q5_K_S 15.6033 5490.31 5.52 4697.02 209.59
Q4_1 15.9842 5001.31 5.03 4770.76 232.50
Q4_K_M 15.8978 4808.79 4.84 4809.82 214.11
Q4_K_S 15.3757 4530.31 4.56 4877.01 221.24
MXFP4 14.8134 4528.31 4.55 4992.58 198.64
Q4_0 15.4652 4521.06 4.55 4993.89 232.26
IQ4_NL 15.7842 4512.31 4.54 5183.51 231.71
IQ4_XS 15.4901 4267.81 4.29 5169.28 226.73
Q3_K_L 16.7625 4123.39 4.15 4464.09 164.34
Q3_K_M 16.2523 3810.14 3.83 4497.96 166.04
IQ3_M 16.5738 3495.76 3.52 4802.77 191.22
IQ3_S 20.6474 3473.19 3.49 4798.82 190.23
Q3_K_S 16.9538 3473.19 3.49 4345.90 149.62
IQ3_XS 19.9761 3282.78 3.30 4812.42 195.83
IQ3_XXS 15.7687 3088.69 3.11 4913.44 204.55
Q2_K 16.7071 2934.70 2.95 3790.56 193.37
Q2_K_S 17.5891 2711.37 2.73 3626.85 217.85
IQ2_M 18.6788 2619.83 2.64 4259.97 209.24
IQ2_S 18.8633 2380.64 2.39 4175.02 211.03
IQ2_XS 19.9971 2363.04 2.38 4142.97 212.15
IQ2_XXS 23.3637 2123.11 2.14 5026.99 214.72
IQ1_M 29.3541 1824.12 1.83 2631.43 215.11
IQ1_S 49.0474 1644.73 1.65 4613.59 236.96

OLMoE-1B-7B-0924-Instruct

Quant Type PPL Size (MiB) BPW Prompt (t/s) Gen (t/s)
f16 10.1857 13201.51 16.01 OOM OOM
Q8_0 10.1944 7017.29 8.51 5259.40 187.13
Q6_K 10.2089 5419.70 6.57 4714.04 197.17
Q5_1 10.2445 4962.79 6.02 4903.92 236.51
Q5_K_M 10.2588 4696.90 5.69 4922.98 224.95
Q5_K_S 10.2546 4556.65 5.52 4863.71 233.73
Q5_0 10.2994 4572.65 5.54 5109.75 240.62
Q4_1 10.3775 4150.51 5.03 4836.63 254.41
Q4_K_M 10.3730 4016.62 4.87 4924.75 232.58
Q4_K_S 10.3988 3778.37 4.58 5108.39 244.35
Q4_0 10.4737 3760.37 4.56 5225.58 250.00
MXFP4 10.8994 3753.29 4.55 5212.85 234.47
IQ4_NL 10.3706 3744.37 4.54 5487.97 256.29
IQ4_XS 10.3900 3541.30 4.29 5496.66 250.08
Q3_K_L 10.5341 3442.32 4.17 4730.45 195.50
Q3_K_M 10.6027 3187.32 3.86 4765.81 197.51
IQ3_M 10.8151 2932.32 3.56 5042.41 213.32
IQ3_S 10.9400 2881.32 3.49 5051.42 209.55
Q3_K_S 10.9314 2881.32 3.49 4616.22 173.28
IQ3_XS 11.0259 2731.32 3.31 5191.34 217.23
IQ3_XXS 11.4085 2563.27 3.11 5207.91 226.50
Q2_K 12.3217 2442.34 2.96 4187.02 214.87
Q2_K_S 14.0056 2281.34 2.77 3978.48 247.06
IQ2_M 12.1105 2218.77 2.69 4672.60 232.21
IQ2_S 13.1473 2030.77 2.46 4588.92 231.39
IQ2_XS 13.7881 1985.79 2.41 4542.42 236.08
IQ2_XXS 15.6348 1795.79 2.18 5272.91 236.27
IQ1_M 21.0811 1560.79 1.89 2805.94 238.75
IQ1_S 27.0239 1419.79 1.72 4901.74 246.70

Setup:

CPU: Intel 12100F

RAM: 64gb of DDR4 dual channel

GPU: RTX 3060 12gb of vram (cpu clock fixed at 1882 MHz via a curve, vram at 8210 MHz)

OS: Windows 11, Nvidia drivers 591.74

Build: precompiled b8116 (492bc3197) for CUDA 13.1

Details:

LFM2-8B-A1B have been quantized from unsloth/LFM2-8B-A1B-GGUF using LFM2-8B-A1B-BF16.gguf and the provided imatrix_unsloth.gguf_file

OLMoE-1B-7B-0924-Instruct have been quantized from bartowski/OLMoE-1B-7B-0924-Instruct-GGUF using OLMoE-1B-7B-0924-Instruct-f16.gguf and I created the imatrix from wiki.train.raw

PPL is calculated with wiki.test.raw with a context of 512 tokens while t/s are calculated for 2048 tokens generated with a context of 8192 tokens.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support