Dataset Viewer
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
FAFO Dataset
The FAFO dataset is designed for universal robotics software development. It includes:
- Sensor data: LiDAR scans, GPS coordinates, and IMU readings.
- Image data: Infrared and camera images for object detection and navigation.
- 3D data: Point cloud files for SLAM and mapping.
- Task data: Pre-labeled tasks for robotic arm operations.
Dataset Overview
Sensor Data
- LiDAR Data: Point cloud scans with timestamps, ranges, intensities, and angles
- GPS Data: Precise location data including latitude, longitude, and altitude
- IMU Data: Acceleration, angular velocity, and orientation readings
Image Data
- RGB camera feeds
- Infrared images
- Object detection datasets with bounding box annotations
3D Data
- Point cloud maps for SLAM
- 3D environment scans
- Occupancy grid maps
Task Data
- Pick-and-place task definitions
- Navigation paths
- Robot arm trajectories
- Task annotations and metadata
Dataset Structure
sensor_data/: Contains JSON files for LiDAR, GPS, and IMU readings.image_data/: JPEG images for object detection and segmentation.3d_data/: PCD files for 3D point clouds.task_data/: JSON files for robotic tasks.
Usage
This dataset is designed for AI model training, sensor calibration, and robotic task automation.
Loading the Dataset
from datasets import load_dataset
# Load the complete dataset
dataset = load_dataset("GotThatData/fafo")
# Load specific splits
train_dataset = load_dataset("GotThatData/fafo", split="train")
val_dataset = load_dataset("GotThatData/fafo", split="validation")
test_dataset = load_dataset("GotThatData/fafo", split="test")
Example Usage
# Access sensor data
lidar_scan = dataset['train'][0]['sensor_data']['lidar']
gps_reading = dataset['train'][0]['sensor_data']['gps']
imu_data = dataset['train'][0]['sensor_data']['imu']
# Access image data
image_path = dataset['train'][0]['image_data']
# Access 3D data
point_cloud = dataset['train'][0]['3d_data']
# Access task data
task = dataset['train'][0]['task_data']
Data Format
Sensor Data
{
"lidar": {
"timestamp": 1640995200.0,
"ranges": [1.2, 2.3, 3.4],
"intensities": [0.5, 0.6, 0.7],
"angles": [0.0, 0.1, 0.2]
},
"gps": {
"timestamp": 1640995200.0,
"latitude": 37.7749,
"longitude": -122.4194,
"altitude": 0.0
},
"imu": {
"timestamp": 1640995200.0,
"acceleration": [0.0, 0.0, 9.81],
"angular_velocity": [0.0, 0.0, 0.0],
"orientation": [0.0, 0.0, 0.0, 1.0]
}
}
Task Data
{
"task_type": "pick_and_place",
"parameters": {
"position": [0.5, 0.3, 0.2],
"orientation": [0.0, 0.0, 0.0, 1.0],
"gripper_state": "open"
},
"annotations": {
"object_class": "cube",
"bounding_box": [0.1, 0.1, 0.2, 0.2],
"confidence": 0.95
}
}
Dataset Statistics
- Total samples: [Number of samples]
- Train/Val/Test split: 60%/20%/20%
- Data types:
- Sensor readings: [Number of readings]
- Images: [Number of images]
- 3D scans: [Number of scans]
- Task definitions: [Number of tasks]
License
MIT License
Citation
@inproceedings{fafo2024,
title={FAFO Dataset},
author={GotThatData},
year={2024}
}
- Downloads last month
- 1