Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

FAFO Dataset

The FAFO dataset is designed for universal robotics software development. It includes:

  • Sensor data: LiDAR scans, GPS coordinates, and IMU readings.
  • Image data: Infrared and camera images for object detection and navigation.
  • 3D data: Point cloud files for SLAM and mapping.
  • Task data: Pre-labeled tasks for robotic arm operations.

Dataset Overview

Sensor Data

  • LiDAR Data: Point cloud scans with timestamps, ranges, intensities, and angles
  • GPS Data: Precise location data including latitude, longitude, and altitude
  • IMU Data: Acceleration, angular velocity, and orientation readings

Image Data

  • RGB camera feeds
  • Infrared images
  • Object detection datasets with bounding box annotations

3D Data

  • Point cloud maps for SLAM
  • 3D environment scans
  • Occupancy grid maps

Task Data

  • Pick-and-place task definitions
  • Navigation paths
  • Robot arm trajectories
  • Task annotations and metadata

Dataset Structure

  • sensor_data/: Contains JSON files for LiDAR, GPS, and IMU readings.
  • image_data/: JPEG images for object detection and segmentation.
  • 3d_data/: PCD files for 3D point clouds.
  • task_data/: JSON files for robotic tasks.

Usage

This dataset is designed for AI model training, sensor calibration, and robotic task automation.

Loading the Dataset

from datasets import load_dataset

# Load the complete dataset
dataset = load_dataset("GotThatData/fafo")

# Load specific splits
train_dataset = load_dataset("GotThatData/fafo", split="train")
val_dataset = load_dataset("GotThatData/fafo", split="validation")
test_dataset = load_dataset("GotThatData/fafo", split="test")

Example Usage

# Access sensor data
lidar_scan = dataset['train'][0]['sensor_data']['lidar']
gps_reading = dataset['train'][0]['sensor_data']['gps']
imu_data = dataset['train'][0]['sensor_data']['imu']

# Access image data
image_path = dataset['train'][0]['image_data']

# Access 3D data
point_cloud = dataset['train'][0]['3d_data']

# Access task data
task = dataset['train'][0]['task_data']

Data Format

Sensor Data

{
    "lidar": {
        "timestamp": 1640995200.0,
        "ranges": [1.2, 2.3, 3.4],
        "intensities": [0.5, 0.6, 0.7],
        "angles": [0.0, 0.1, 0.2]
    },
    "gps": {
        "timestamp": 1640995200.0,
        "latitude": 37.7749,
        "longitude": -122.4194,
        "altitude": 0.0
    },
    "imu": {
        "timestamp": 1640995200.0,
        "acceleration": [0.0, 0.0, 9.81],
        "angular_velocity": [0.0, 0.0, 0.0],
        "orientation": [0.0, 0.0, 0.0, 1.0]
    }
}

Task Data

{
    "task_type": "pick_and_place",
    "parameters": {
        "position": [0.5, 0.3, 0.2],
        "orientation": [0.0, 0.0, 0.0, 1.0],
        "gripper_state": "open"
    },
    "annotations": {
        "object_class": "cube",
        "bounding_box": [0.1, 0.1, 0.2, 0.2],
        "confidence": 0.95
    }
}

Dataset Statistics

  • Total samples: [Number of samples]
  • Train/Val/Test split: 60%/20%/20%
  • Data types:
    • Sensor readings: [Number of readings]
    • Images: [Number of images]
    • 3D scans: [Number of scans]
    • Task definitions: [Number of tasks]

License

MIT License

Citation

@inproceedings{fafo2024,
    title={FAFO Dataset},
    author={GotThatData},
    year={2024}
}
Downloads last month
1