doc_split / README.md
mmiakashs's picture
Update README.md
4a6a1f7 verified
metadata
license: cc-by-nc-4.0
language:
  - en
  - ar
  - hi
tags:
  - Document_Understanding
  - Document_Packet_Splitting
  - Document_Comprehension
  - Document_Classification
  - Document_Recognition
  - Document_Segmentation
pretty_name: DocSplit Benchmark
size_categories:
  - 1M<n<10M

In addition to the dataset, we release this repository containing the complete toolkit for generating the benchmark datasets, along with Jupyter notebooks for data analysis.

DocSplit: Document Packet Splitting Benchmark Generator

A toolkit for creating benchmark datasets to test document packet splitting systems. Document packet splitting is the task of separating concatenated multi-page documents into individual documents with correct page ordering.

Overview

This toolkit generates five benchmark datasets of varying complexity to test how well models can:

  1. Detect document boundaries within concatenated packets
  2. Classify document types accurately
  3. Reconstruct correct page ordering within each document

Document Source

We uses the documents from RVL-CDIP-N-MP:
https://huggingface.co/datasets/jordyvl/rvl_cdip_n_mp

Quick Start

Clone from Hugging Face

This repository is hosted on Hugging Face at: https://huggingface.co/datasets/amazon/doc_split

Choose one of the following methods to download the repository:

Option 1: Using Git with Git LFS (Recommended)

Git LFS (Large File Storage) is required for Hugging Face datasets as they often contain large files.

Install Git LFS:

# Linux (Ubuntu/Debian):
sudo apt-get install git-lfs
git lfs install

# macOS (Homebrew):
brew install git-lfs
git lfs install

# Windows: Download from https://git-lfs.github.com, then run:
# git lfs install

Clone the repository:

git clone https://huggingface.co/datasets/amazon/doc_split
cd doc_split
pip install -r requirements.txt

Option 2: Using Hugging Face CLI

# 1. Install the Hugging Face Hub CLI
pip install -U "huggingface_hub[cli]"

# 2. (Optional) Login if authentication is required
huggingface-cli login

# 3. Download the dataset
huggingface-cli download amazon/doc_split --repo-type dataset --local-dir doc_split

# 4. Navigate and install dependencies
cd doc_split
pip install -r requirements.txt

Option 3: Using Python SDK (huggingface_hub)

from huggingface_hub import snapshot_download

# Download the entire dataset repository
local_dir = snapshot_download(
    repo_id="amazon/doc_split",
    repo_type="dataset",
    local_dir="doc_split"
)

print(f"Dataset downloaded to: {local_dir}")

Then install dependencies:

cd doc_split
pip install -r requirements.txt

Tips

  • Check Disk Space: Hugging Face datasets can be large. Check the "Files and versions" tab on the Hugging Face page to see the total size before downloading.
  • Partial Clone: If you only need specific files (e.g., code without large data files), use:
    GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/amazon/doc_split
    cd doc_split
    # Then selectively pull specific files:
    git lfs pull --include="*.py"
    

Usage

Step 1: Create Assets

Convert raw PDFs into structured assets with page images (300 DPI PNG) and OCR text (Markdown).

Option A: AWS Textract OCR (Default)

Best for English documents. Processes all document categories with Textract.

python src/assets/run.py \
  --raw-data-path data/raw_data \
  --output-path data/assets \
  --s3-bucket your-bucket-name \
  --s3-prefix textract-temp \
  --workers 10 \
  --save-mapping

Requirements:

  • AWS credentials configured (aws configure)
  • S3 bucket for temporary file uploads
  • No GPU required

Option B: Hybrid OCR (Textract + DeepSeek)

Uses Textract for most categories, DeepSeek OCR only for the "language" category (multilingual documents).

Note: For this project, DeepSeek OCR was used only for the "language" category and executed in AWS SageMaker AI with GPU instances (e.g., ml.g6.xlarge).

1. Install flash-attention (Required for DeepSeek):

# For CUDA 12.x with Python 3.12:
cd /mnt/sagemaker-nvme  # Use larger disk for downloads
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu12torch2.9cxx11abiTRUE-cp312-cp312-linux_x86_64.whl
pip install flash_attn-2.8.3+cu12torch2.9cxx11abiTRUE-cp312-cp312-linux_x86_64.whl

# For other CUDA/Python versions: https://github.com/Dao-AILab/flash-attention/releases

2. Set cache directory (Important for SageMaker):

# SageMaker: Use larger NVMe disk instead of small home directory
export HF_HOME=/mnt/sagemaker-nvme/cache
export TRANSFORMERS_CACHE=/mnt/sagemaker-nvme/cache

3. Run asset creation:

python src/assets/run.py \
  --raw-data-path data/raw_data \
  --output-path data/assets \
  --s3-bucket your-bucket-name \
  --use-deepseek-for-language \
  --workers 10 \
  --save-mapping

Requirements:

  • NVIDIA GPU with CUDA support (tested on ml.g6.xlarge)
  • ~10GB+ disk space for model downloads
  • flash-attention library installed
  • AWS credentials (for Textract on non-language categories)
  • S3 bucket (for Textract on non-language categories)

How it works:

  • Documents in raw_data/language/ → DeepSeek OCR (GPU)
  • All other categories → AWS Textract (cloud)

Parameters

  • --raw-data-path: Directory containing source PDFs organized by document type
  • --output-path: Where to save extracted assets (images + OCR text)
  • --s3-bucket: S3 bucket name (required for Textract)
  • --s3-prefix: S3 prefix for temporary files (default: textract-temp)
  • --workers: Number of parallel processes (default: 10)
  • --save-mapping: Save CSV mapping document IDs to file paths
  • --use-deepseek-for-language: Use DeepSeek OCR for "language" category only
  • --limit: Process only N documents (useful for testing)

What Happens

  1. Scans raw_data/ directory for PDFs organized by document type
  2. Extracts each page as 300 DPI PNG image
  3. Runs OCR (Textract or DeepSeek) to extract text
  4. Saves structured assets in output-path/{doc_type}/{doc_name}/
  5. Optionally creates document_mapping.csv listing all processed documents
  6. These assets become the input for Step 2 (benchmark generation)

Output Structure

data/assets/
└── {doc_type}/{filename}/
    ├── original/{filename}.pdf
    └── pages/{page_num}/
        ├── page-{num}.png          # 300 DPI image
        └── page-{num}-textract.md  # OCR text

Interactive Notebooks

Explore the toolkit with Jupyter notebooks:

  1. notebooks/01_create_assets.ipynb - Create assets from PDFs
  2. notebooks/02_create_benchmarks.ipynb - Generate benchmarks with different strategies
  3. notebooks/03_analyze_benchmarks.ipynb - Analyze and visualize benchmark statistics

Benchmark Output Format

Each benchmark JSON contains:

{
  "benchmark_name": "poly_seq",
  "strategy": "PolySeq",
  "split": "train",
  "created_at": "2026-01-30T12:00:00",
  "documents": [
    {
      "spliced_doc_id": "splice_0001",
      "source_documents": [
        {"doc_type": "invoice", "doc_name": "doc1", "pages": [1,2,3]},
        {"doc_type": "letter", "doc_name": "doc2", "pages": [1,2]}
      ],
      "ground_truth": [
        {"page_num": 1, "doc_type": "invoice", "source_doc": "doc1", "source_page": 1},
        {"page_num": 2, "doc_type": "invoice", "source_doc": "doc1", "source_page": 2},
        ...
      ],
      "total_pages": 5
    }
  ],
  "statistics": {
    "total_spliced_documents": 1000,
    "total_pages": 7500,
    "unique_doc_types": 16
  }
}

Requirements

  • Python 3.8+
  • AWS credentials (for Textract OCR)
  • Dependencies: boto3, loguru, pymupdf, pillow

Generate Benchmark Datasets

# 1. Download and extract RVL-CDIP-N-MP source data from HuggingFace (1.25 GB)
#    This dataset contains multi-page PDFs organized by document type
#    (invoices, letters, forms, reports, etc.)
mkdir -p data/raw_data
cd data/raw_data
wget https://huggingface.co/datasets/jordyvl/rvl_cdip_n_mp/resolve/main/data.tar.gz
tar -xzf data.tar.gz
rm data.tar.gz
cd ../..

# 2. Create assets from raw PDFs
#    Extracts each page as PNG image and runs OCR to get text
#    These assets are then used in step 4 to create benchmark datasets
#    Output: Structured assets in data/assets/ with images and text per page
python src/assets/run.py --raw-data-path data/raw_data --output-path data/assets

# 3. Generate benchmark datasets
#    This concatenates documents using different strategies and creates
#    train/test/validation splits with ground truth labels
#    Output: Benchmark JSON files in data/benchmarks/ ready for model evaluation
python src/benchmarks/run.py \
  --strategy poly_seq \
  --assets-path data/assets \
  --output-path data/benchmarks

Pipeline Overview

Raw PDFs → [Create Assets] → Page Images + OCR Text → [Generate Benchmarks] → DocSplit Benchmarks

Five Benchmark Datasets

The toolkit generates five benchmarks of increasing complexity, based on the DocSplit paper:

1. DocSplit-Mono-Seq (mono_seq)

Single Category Document Concatenation Sequentially

  • Concatenates documents from the same category
  • Preserves original page order
  • Challenge: Boundary detection without category transitions as discriminative signals
  • Use Case: Legal document processing where multiple contracts of the same type are bundled

2. DocSplit-Mono-Rand (mono_rand)

Single Category Document Pages Randomization

  • Same as Mono-Seq but shuffles pages within documents
  • Challenge: Boundary detection + page sequence reconstruction
  • Use Case: Manual document assembly with page-level disruptions

3. DocSplit-Poly-Seq (poly_seq)

Multi Category Documents Concatenation Sequentially

  • Concatenates documents from different categories
  • Preserves page ordering
  • Challenge: Inter-document boundary detection with category diversity
  • Use Case: Medical claims processing with heterogeneous documents

4. DocSplit-Poly-Int (poly_int)

Multi Category Document Pages Interleaving

  • Interleaves pages from different categories in round-robin fashion
  • Challenge: Identifying which non-contiguous pages belong together
  • Use Case: Mortgage processing where deeds, tax records, and notices are interspersed

5. DocSplit-Poly-Rand (poly_rand)

Multi Category Document Pages Randomization

  • Complete randomization across all pages (maximum entropy)
  • Challenge: Worst-case scenario with no structural assumptions
  • Use Case: Document management system failures or emergency recovery

Project Structure

doc-split-benchmark/
├── README.md
├── requirements.txt           # All dependencies
├── src/
│   ├── assets/               # Asset creation from PDFs
│   │   ├── run.py           # Main script
│   │   ├── models.py        # Document models
│   │   └── services/
│   │       ├── pdf_loader.py
│   │       ├── textract_ocr.py
│   │       └── asset_writer.py
│   │
│   └── benchmarks/           # Benchmark generation
│       ├── run.py           # Main script
│       ├── models.py        # Benchmark models
│       └── services/
│           ├── asset_loader.py
│           ├── split_manager.py
│           ├── benchmark_generator.py
│           ├── benchmark_writer.py
│           └── strategies/
│               ├── mono_seq.py    # DocSplit-Mono-Seq
│               ├── mono_rand.py   # DocSplit-Mono-Rand
│               ├── poly_seq.py    # DocSplit-Poly-Seq
│               ├── poly_int.py    # DocSplit-Poly-Int
│               └── poly_rand.py   # DocSplit-Poly-Rand
│
├── notebooks/                # Interactive examples
│   ├── 01_create_assets.ipynb
│   ├── 02_create_benchmarks.ipynb
│   └── 03_analyze_benchmarks.ipynb
│
└── data/                     # Generated data (not in repo)
    ├── raw_data/            # Downloaded PDFs
    ├── assets/              # Extracted images + OCR
    └── benchmarks/          # Generated benchmarks

Generate Benchmarks [Detailed]

Create DocSplit benchmarks with train/test/validation splits.

python src/benchmarks/run.py \
  --strategy poly_seq \
  --assets-path data/assets \
  --output-path data/benchmarks \
  --num-docs-train 800 \
  --num-docs-test 200 \
  --num-docs-val 500 \
  --size small \
  --random-seed 42

Parameters:

  • --strategy: Benchmark strategy - mono_seq, mono_rand, poly_seq, poly_int, poly_rand, or all (default: all)
  • --assets-path: Directory containing assets from Step 1 (default: data/assets)
  • --output-path: Where to save benchmarks (default: data/benchmarks)
  • --num-docs-train: Number of spliced documents for training (default: 8)
  • --num-docs-test: Number of spliced documents for testing (default: 5)
  • --num-docs-val: Number of spliced documents for validation (default: 2)
  • --size: Benchmark size - small (5-20 pages) or large (20-500 pages) (default: small)
  • --split-mapping: Path to split mapping JSON (default: data/metadata/split_mapping.json)
  • --random-seed: Seed for reproducibility (default: 42)

What Happens:

  1. Loads all document assets from Step 1
  2. Creates or loads stratified train/test/val split (60/25/15 ratio)
  3. Generates spliced documents by concatenating/shuffling pages per strategy
  4. Saves benchmark CSV files with ground truth labels

Output Structure:

data/
├── metadata/
│   └── split_mapping.json           # Document split assignments (shared across strategies)
└── benchmarks/
    └── {strategy}/                  # e.g., poly_seq, mono_rand
        └── {size}/                  # small or large
            ├── train.csv
            ├── test.csv
            └── validation.csv

How to cite this dataset

@misc{docsplit,
  author = {Islam, Md Mofijul and Salekin, Md Sirajus and Balakrishnan, Nivedha and Bishop, Vincil C. and Jain, Niharika and Romo, Spencer and Strahan, Bob and Xie, Boyi and Socolinsky, Diego A. },
  title = {DocSplit: A Comprehensive Benchmark Dataset and Evaluation Approach
for Document Packet Recognition and Splitting},
  howpublished = {\url{https://huggingface.co/datasets/amazon/doc_split/}},
  url = {https://huggingface.co/datasets/amazon/doc_split/},
  type = {dataset},
  year = {2026},
  month = {February},
  timestamp = {2024-02-04},
  note = {Accessed: 2026-02-04}
}

License

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: CC-BY-NC-4.0