id
int64
599M
3.48B
number
int64
1
7.8k
title
stringlengths
1
290
state
stringclasses
2 values
comments
listlengths
0
30
created_at
timestamp[s]date
2020-04-14 10:18:02
2025-10-05 06:37:50
updated_at
timestamp[s]date
2020-04-27 16:04:17
2025-10-05 10:32:43
closed_at
timestamp[s]date
2020-04-14 12:01:40
2025-10-01 13:56:03
โŒ€
body
stringlengths
0
228k
โŒ€
user
stringlengths
3
26
html_url
stringlengths
46
51
pull_request
dict
is_pull_request
bool
2 classes
1,577,590,611
5,515
Unify `load_from_cache_file` type and logic
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "The commit also includes the changes to the `DatasetDict` methods or am I missing something?", "Oh, indeed. Feel free to mark the PR as \"Ready for review\" then.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010149 / 0.011353 (-0.001204) | 0.005606 / 0.011008 (-0.005402) | 0.103455 / 0.038508 (0.064947) | 0.042934 / 0.023109 (0.019825) | 0.308365 / 0.275898 (0.032467) | 0.394188 / 0.323480 (0.070708) | 0.008760 / 0.007986 (0.000774) | 0.004567 / 0.004328 (0.000239) | 0.077959 / 0.004250 (0.073708) | 0.050115 / 0.037052 (0.013063) | 0.318009 / 0.258489 (0.059520) | 0.358578 / 0.293841 (0.064737) | 0.039231 / 0.128546 (-0.089315) | 0.012381 / 0.075646 (-0.063265) | 0.340046 / 0.419271 (-0.079226) | 0.048366 / 0.043533 (0.004834) | 0.307643 / 0.255139 (0.052504) | 0.342886 / 0.283200 (0.059687) | 0.109628 / 0.141683 (-0.032055) | 1.457297 / 1.452155 (0.005142) | 1.518067 / 1.492716 (0.025351) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.295590 / 0.018006 (0.277584) | 0.531515 / 0.000490 (0.531026) | 0.005677 / 0.000200 (0.005477) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030901 / 0.037411 (-0.006511) | 0.118312 / 0.014526 (0.103786) | 0.123146 / 0.176557 (-0.053410) | 0.163608 / 0.737135 (-0.573527) | 0.128604 / 0.296338 (-0.167734) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404143 / 0.215209 (0.188934) | 4.000118 / 2.077655 (1.922464) | 1.804502 / 1.504120 (0.300382) | 1.597287 / 1.541195 (0.056093) | 1.738512 / 1.468490 (0.270022) | 0.704658 / 4.584777 (-3.880119) | 3.830101 / 3.745712 (0.084389) | 2.186598 / 5.269862 (-3.083263) | 1.367873 / 4.565676 (-3.197804) | 0.085550 / 0.424275 (-0.338725) | 0.012226 / 0.007607 (0.004619) | 0.505760 / 0.226044 (0.279716) | 5.054583 / 2.268929 (2.785655) | 2.284942 / 55.444624 (-53.159682) | 1.961413 / 6.876477 (-4.915064) | 2.059449 / 2.142072 (-0.082623) | 0.845009 / 4.805227 (-3.960218) | 0.167204 / 6.500664 (-6.333460) | 0.065998 / 0.075469 (-0.009471) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221861 / 1.841788 (-0.619927) | 15.925213 / 8.074308 (7.850905) | 15.359308 / 10.191392 (5.167916) | 0.171776 / 0.680424 (-0.508648) | 0.029234 / 0.534201 (-0.504967) | 0.446349 / 0.579283 (-0.132934) | 0.447873 / 0.434364 (0.013509) | 0.527400 / 0.540337 (-0.012937) | 0.610208 / 1.386936 (-0.776728) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008030 / 0.011353 (-0.003323) | 0.005686 / 0.011008 (-0.005322) | 0.076204 / 0.038508 (0.037696) | 0.037131 / 0.023109 (0.014022) | 0.341461 / 0.275898 (0.065563) | 0.378734 / 0.323480 (0.055255) | 0.006580 / 0.007986 (-0.001406) | 0.004379 / 0.004328 (0.000050) | 0.073983 / 0.004250 (0.069732) | 0.055895 / 0.037052 (0.018842) | 0.342667 / 0.258489 (0.084178) | 0.401464 / 0.293841 (0.107623) | 0.037710 / 0.128546 (-0.090837) | 0.012604 / 0.075646 (-0.063042) | 0.087563 / 0.419271 (-0.331709) | 0.050887 / 0.043533 (0.007354) | 0.333491 / 0.255139 (0.078352) | 0.357437 / 0.283200 (0.074237) | 0.109566 / 0.141683 (-0.032117) | 1.423372 / 1.452155 (-0.028783) | 1.569423 / 1.492716 (0.076706) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.340986 / 0.018006 (0.322980) | 0.530885 / 0.000490 (0.530395) | 0.004172 / 0.000200 (0.003972) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030424 / 0.037411 (-0.006987) | 0.121191 / 0.014526 (0.106666) | 0.129066 / 0.176557 (-0.047491) | 0.166938 / 0.737135 (-0.570198) | 0.132000 / 0.296338 (-0.164338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418718 / 0.215209 (0.203509) | 4.163973 / 2.077655 (2.086318) | 1.982665 / 1.504120 (0.478545) | 1.798866 / 1.541195 (0.257671) | 1.918867 / 1.468490 (0.450377) | 0.724634 / 4.584777 (-3.860143) | 3.864549 / 3.745712 (0.118837) | 3.697768 / 5.269862 (-1.572093) | 1.983942 / 4.565676 (-2.581735) | 0.086818 / 0.424275 (-0.337457) | 0.012336 / 0.007607 (0.004728) | 0.522314 / 0.226044 (0.296269) | 5.216813 / 2.268929 (2.947884) | 2.516187 / 55.444624 (-52.928437) | 2.172057 / 6.876477 (-4.704420) | 2.342773 / 2.142072 (0.200701) | 0.851805 / 4.805227 (-3.953422) | 0.170139 / 6.500664 (-6.330525) | 0.068494 / 0.075469 (-0.006975) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.307370 / 1.841788 (-0.534418) | 16.737937 / 8.074308 (8.663629) | 14.483384 / 10.191392 (4.291992) | 0.172418 / 0.680424 (-0.508006) | 0.018241 / 0.534201 (-0.515960) | 0.432049 / 0.579283 (-0.147234) | 0.447590 / 0.434364 (0.013227) | 0.550332 / 0.540337 (0.009994) | 0.646756 / 1.386936 (-0.740180) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#819bc6e9f88459f363e6fb6948e9cbe5c231500d \"CML watermark\")\n" ]
2023-02-09T10:04:46
2023-02-14T15:38:13
2023-02-14T14:26:42
* Updating type annotations for #`load_from_cache_file` * Added logic for cache checking if needed * Updated documentation following the wording of `Dataset.map`
HallerPatrick
https://github.com/huggingface/datasets/pull/5515
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5515", "html_url": "https://github.com/huggingface/datasets/pull/5515", "diff_url": "https://github.com/huggingface/datasets/pull/5515.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5515.patch", "merged_at": "2023-02-14T14:26:42" }
true
1,576,453,837
5,514
Improve inconsistency of `Dataset.map` interface for `load_from_cache_file`
closed
[ "Hi, thanks for noticing this! We can't just remove the cache control as this allows us to control where the arrow files generated by the ops are written (cached on disk if enabled or a temporary directory if disabled). The right way to address this inconsistency would be by having `load_from_cache_file=None` by default everywhere.", "Hi! Yes, this seems more plausible. I can implement that. One last thing is the type annotation `load_from_cache_file: bool = None`. Which I then would change to `load_from_cache_file: Optional[bool] = None`.", "PR #5515 ", "Yes, `Optional[bool]` is the correct type annotation and thanks for the PR." ]
2023-02-08T16:40:44
2023-02-14T14:26:44
2023-02-14T14:26:44
### Feature request 1. Replace the `load_from_cache_file` default value to `True`. 2. Remove or alter checks from `is_caching_enabled` logic. ### Motivation I stumbled over an inconsistency in the `Dataset.map` interface. The documentation (and source) states for the parameter `load_from_cache_file`: ``` load_from_cache_file (`bool`, defaults to `True` if caching is enabled): If a cache file storing the current computation from `function` can be identified, use it instead of recomputing. ``` 1. `load_from_cache_file` default value is `None`, while being annotated as `bool` 2. It is inconsistent with other method signatures like `filter`, that have the default value `True` 3. The logic is inconsistent, as the `map` method checks if caching is enabled through `is_caching_enabled`. This logic is not used for other similar methods. ### Your contribution I am not fully aware of the logic behind caching checks. If this is just a inconsistency that historically grew, I would suggest to remove the `is_caching_enabled` logic as the "default" logic. Maybe someone can give insights, if environment variables have a higher priority than local variables or vice versa. If this is clarified, I could adjust the source according to the "Feature request" section of this issue.
HallerPatrick
https://github.com/huggingface/datasets/issues/5514
null
false
1,576,300,803
5,513
Some functions use a param named `type` shouldn't that be avoided since it's a Python reserved name?
closed
[ "Hi! Let's not do this - renaming it would be a breaking change, and going through the deprecation cycle is only worth it if it improves user experience.", "Hi @mariosasko, ok it makes sense. Anyway, don't you think it's worth it at some point to start a deprecation cycle e.g. `fs` in `load_from_disk`? It doesn't affect user experience but it's for sure a bad practice IMO, but's up to you ๐Ÿ˜„ Feel free to close this issue otherwise!", "I don't think deprecating a param name in this particular instance is worth the hassle, so I'm closing the issue ๐Ÿ™‚.", "Sure, makes sense @mariosasko thanks!" ]
2023-02-08T15:13:46
2023-07-24T16:02:18
2023-07-24T14:27:59
Hi @mariosasko, @lhoestq, or whoever reads this! :) After going through `ArrowDataset.set_format` I found out that the `type` param is actually named `type` which is a Python reserved name as you may already know, shouldn't that be renamed to `format_type` before the 3.0.0 is released? Just wanted to get your input, and if applicable, tackle this issue myself! Thanks ๐Ÿค—
alvarobartt
https://github.com/huggingface/datasets/issues/5513
null
false
1,576,142,432
5,512
Speed up batched PyTorch DataLoader
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008882 / 0.011353 (-0.002471) | 0.004562 / 0.011008 (-0.006446) | 0.100035 / 0.038508 (0.061527) | 0.030654 / 0.023109 (0.007545) | 0.298745 / 0.275898 (0.022847) | 0.356869 / 0.323480 (0.033389) | 0.007170 / 0.007986 (-0.000815) | 0.003471 / 0.004328 (-0.000858) | 0.077975 / 0.004250 (0.073725) | 0.037861 / 0.037052 (0.000809) | 0.311643 / 0.258489 (0.053154) | 0.343504 / 0.293841 (0.049663) | 0.033768 / 0.128546 (-0.094778) | 0.011342 / 0.075646 (-0.064304) | 0.323953 / 0.419271 (-0.095319) | 0.040818 / 0.043533 (-0.002715) | 0.298492 / 0.255139 (0.043353) | 0.327292 / 0.283200 (0.044092) | 0.088423 / 0.141683 (-0.053260) | 1.489520 / 1.452155 (0.037366) | 1.532962 / 1.492716 (0.040245) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223654 / 0.018006 (0.205647) | 0.415134 / 0.000490 (0.414644) | 0.007394 / 0.000200 (0.007194) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023616 / 0.037411 (-0.013795) | 0.096652 / 0.014526 (0.082126) | 0.105239 / 0.176557 (-0.071318) | 0.148637 / 0.737135 (-0.588498) | 0.107937 / 0.296338 (-0.188402) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426816 / 0.215209 (0.211607) | 4.241533 / 2.077655 (2.163878) | 1.946493 / 1.504120 (0.442373) | 1.735765 / 1.541195 (0.194570) | 1.781424 / 1.468490 (0.312934) | 0.688082 / 4.584777 (-3.896694) | 3.396444 / 3.745712 (-0.349268) | 1.920333 / 5.269862 (-3.349528) | 1.293833 / 4.565676 (-3.271843) | 0.081967 / 0.424275 (-0.342308) | 0.012911 / 0.007607 (0.005304) | 0.536928 / 0.226044 (0.310884) | 5.452327 / 2.268929 (3.183399) | 2.505785 / 55.444624 (-52.938840) | 2.173627 / 6.876477 (-4.702850) | 2.119978 / 2.142072 (-0.022095) | 0.809012 / 4.805227 (-3.996215) | 0.149124 / 6.500664 (-6.351540) | 0.066008 / 0.075469 (-0.009461) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215702 / 1.841788 (-0.626085) | 13.757525 / 8.074308 (5.683217) | 13.999208 / 10.191392 (3.807816) | 0.164875 / 0.680424 (-0.515549) | 0.028517 / 0.534201 (-0.505684) | 0.394829 / 0.579283 (-0.184454) | 0.404962 / 0.434364 (-0.029401) | 0.484455 / 0.540337 (-0.055882) | 0.575008 / 1.386936 (-0.811928) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006754 / 0.011353 (-0.004598) | 0.004579 / 0.011008 (-0.006430) | 0.076617 / 0.038508 (0.038109) | 0.027902 / 0.023109 (0.004793) | 0.346278 / 0.275898 (0.070380) | 0.398060 / 0.323480 (0.074580) | 0.004938 / 0.007986 (-0.003047) | 0.004681 / 0.004328 (0.000353) | 0.076336 / 0.004250 (0.072086) | 0.038018 / 0.037052 (0.000966) | 0.358701 / 0.258489 (0.100212) | 0.408413 / 0.293841 (0.114572) | 0.031772 / 0.128546 (-0.096774) | 0.011604 / 0.075646 (-0.064042) | 0.085964 / 0.419271 (-0.333308) | 0.042030 / 0.043533 (-0.001502) | 0.343568 / 0.255139 (0.088429) | 0.381805 / 0.283200 (0.098605) | 0.090759 / 0.141683 (-0.050924) | 1.504553 / 1.452155 (0.052398) | 1.594006 / 1.492716 (0.101289) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227395 / 0.018006 (0.209389) | 0.403097 / 0.000490 (0.402608) | 0.000413 / 0.000200 (0.000213) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024693 / 0.037411 (-0.012718) | 0.100470 / 0.014526 (0.085944) | 0.108481 / 0.176557 (-0.068076) | 0.142791 / 0.737135 (-0.594345) | 0.109949 / 0.296338 (-0.186389) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443674 / 0.215209 (0.228465) | 4.412207 / 2.077655 (2.334553) | 2.073752 / 1.504120 (0.569632) | 1.863153 / 1.541195 (0.321958) | 1.940063 / 1.468490 (0.471573) | 0.696456 / 4.584777 (-3.888321) | 3.422120 / 3.745712 (-0.323592) | 1.902579 / 5.269862 (-3.367282) | 1.184948 / 4.565676 (-3.380729) | 0.083079 / 0.424275 (-0.341196) | 0.012649 / 0.007607 (0.005042) | 0.542035 / 0.226044 (0.315991) | 5.421826 / 2.268929 (3.152897) | 2.525092 / 55.444624 (-52.919532) | 2.177144 / 6.876477 (-4.699332) | 2.225224 / 2.142072 (0.083151) | 0.804739 / 4.805227 (-4.000488) | 0.151000 / 6.500664 (-6.349664) | 0.066987 / 0.075469 (-0.008482) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277199 / 1.841788 (-0.564589) | 14.184146 / 8.074308 (6.109838) | 13.413348 / 10.191392 (3.221956) | 0.128551 / 0.680424 (-0.551872) | 0.016461 / 0.534201 (-0.517740) | 0.379963 / 0.579283 (-0.199320) | 0.381350 / 0.434364 (-0.053014) | 0.439044 / 0.540337 (-0.101293) | 0.521559 / 1.386936 (-0.865377) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4f3c152c1c35df250d2fbeb25d5823a65714f2d8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008876 / 0.011353 (-0.002477) | 0.004629 / 0.011008 (-0.006379) | 0.101697 / 0.038508 (0.063189) | 0.030373 / 0.023109 (0.007264) | 0.302206 / 0.275898 (0.026308) | 0.365835 / 0.323480 (0.042355) | 0.007877 / 0.007986 (-0.000109) | 0.004473 / 0.004328 (0.000144) | 0.077334 / 0.004250 (0.073084) | 0.038066 / 0.037052 (0.001014) | 0.308064 / 0.258489 (0.049575) | 0.347329 / 0.293841 (0.053488) | 0.034478 / 0.128546 (-0.094068) | 0.011651 / 0.075646 (-0.063995) | 0.323481 / 0.419271 (-0.095791) | 0.043515 / 0.043533 (-0.000018) | 0.299885 / 0.255139 (0.044746) | 0.328959 / 0.283200 (0.045760) | 0.095308 / 0.141683 (-0.046375) | 1.474058 / 1.452155 (0.021903) | 1.535335 / 1.492716 (0.042619) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197416 / 0.018006 (0.179410) | 0.421935 / 0.000490 (0.421446) | 0.003490 / 0.000200 (0.003290) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024519 / 0.037411 (-0.012892) | 0.100710 / 0.014526 (0.086185) | 0.104520 / 0.176557 (-0.072036) | 0.142048 / 0.737135 (-0.595087) | 0.109274 / 0.296338 (-0.187064) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408766 / 0.215209 (0.193557) | 4.101720 / 2.077655 (2.024065) | 1.812375 / 1.504120 (0.308256) | 1.605819 / 1.541195 (0.064624) | 1.688923 / 1.468490 (0.220433) | 0.691198 / 4.584777 (-3.893579) | 3.422137 / 3.745712 (-0.323575) | 1.921318 / 5.269862 (-3.348544) | 1.168770 / 4.565676 (-3.396906) | 0.082840 / 0.424275 (-0.341435) | 0.012740 / 0.007607 (0.005133) | 0.524333 / 0.226044 (0.298289) | 5.258077 / 2.268929 (2.989149) | 2.273177 / 55.444624 (-53.171447) | 1.931919 / 6.876477 (-4.944558) | 1.988415 / 2.142072 (-0.153658) | 0.812227 / 4.805227 (-3.993000) | 0.150043 / 6.500664 (-6.350622) | 0.066422 / 0.075469 (-0.009047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.188069 / 1.841788 (-0.653718) | 13.942681 / 8.074308 (5.868373) | 14.104658 / 10.191392 (3.913266) | 0.151966 / 0.680424 (-0.528458) | 0.028833 / 0.534201 (-0.505368) | 0.395125 / 0.579283 (-0.184158) | 0.408512 / 0.434364 (-0.025852) | 0.487587 / 0.540337 (-0.052751) | 0.570023 / 1.386936 (-0.816913) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006860 / 0.011353 (-0.004493) | 0.004582 / 0.011008 (-0.006426) | 0.079902 / 0.038508 (0.041394) | 0.027565 / 0.023109 (0.004456) | 0.341393 / 0.275898 (0.065495) | 0.378911 / 0.323480 (0.055431) | 0.005847 / 0.007986 (-0.002138) | 0.004681 / 0.004328 (0.000353) | 0.079422 / 0.004250 (0.075171) | 0.039135 / 0.037052 (0.002083) | 0.342026 / 0.258489 (0.083537) | 0.387510 / 0.293841 (0.093669) | 0.031999 / 0.128546 (-0.096547) | 0.011782 / 0.075646 (-0.063865) | 0.088563 / 0.419271 (-0.330709) | 0.042435 / 0.043533 (-0.001098) | 0.343055 / 0.255139 (0.087916) | 0.367437 / 0.283200 (0.084237) | 0.091578 / 0.141683 (-0.050104) | 1.506828 / 1.452155 (0.054673) | 1.599590 / 1.492716 (0.106874) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217939 / 0.018006 (0.199932) | 0.408352 / 0.000490 (0.407863) | 0.000394 / 0.000200 (0.000194) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026344 / 0.037411 (-0.011067) | 0.102968 / 0.014526 (0.088442) | 0.110340 / 0.176557 (-0.066217) | 0.145696 / 0.737135 (-0.591439) | 0.111632 / 0.296338 (-0.184707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440764 / 0.215209 (0.225555) | 4.423179 / 2.077655 (2.345524) | 2.057016 / 1.504120 (0.552896) | 1.848741 / 1.541195 (0.307546) | 1.939827 / 1.468490 (0.471337) | 0.699370 / 4.584777 (-3.885407) | 3.472521 / 3.745712 (-0.273191) | 3.232557 / 5.269862 (-2.037305) | 1.755534 / 4.565676 (-2.810143) | 0.083469 / 0.424275 (-0.340807) | 0.012980 / 0.007607 (0.005373) | 0.557662 / 0.226044 (0.331618) | 5.435657 / 2.268929 (3.166729) | 2.545106 / 55.444624 (-52.899519) | 2.168047 / 6.876477 (-4.708430) | 2.234070 / 2.142072 (0.091997) | 0.804662 / 4.805227 (-4.000565) | 0.152832 / 6.500664 (-6.347833) | 0.069372 / 0.075469 (-0.006097) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.299189 / 1.841788 (-0.542598) | 14.752880 / 8.074308 (6.678572) | 13.607676 / 10.191392 (3.416284) | 0.150773 / 0.680424 (-0.529650) | 0.016701 / 0.534201 (-0.517500) | 0.379507 / 0.579283 (-0.199776) | 0.389401 / 0.434364 (-0.044963) | 0.444199 / 0.540337 (-0.096139) | 0.524264 / 1.386936 (-0.862672) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#12be850b36c0b9d4841af86c75e08c0a726ffb5c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008694 / 0.011353 (-0.002659) | 0.004549 / 0.011008 (-0.006459) | 0.101164 / 0.038508 (0.062656) | 0.029644 / 0.023109 (0.006535) | 0.294849 / 0.275898 (0.018950) | 0.366755 / 0.323480 (0.043275) | 0.007205 / 0.007986 (-0.000780) | 0.004255 / 0.004328 (-0.000074) | 0.077433 / 0.004250 (0.073183) | 0.038024 / 0.037052 (0.000972) | 0.310380 / 0.258489 (0.051891) | 0.347093 / 0.293841 (0.053252) | 0.033232 / 0.128546 (-0.095314) | 0.011404 / 0.075646 (-0.064242) | 0.323341 / 0.419271 (-0.095930) | 0.040586 / 0.043533 (-0.002946) | 0.296083 / 0.255139 (0.040944) | 0.321870 / 0.283200 (0.038671) | 0.087377 / 0.141683 (-0.054306) | 1.466869 / 1.452155 (0.014715) | 1.514763 / 1.492716 (0.022046) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010272 / 0.018006 (-0.007734) | 0.414645 / 0.000490 (0.414155) | 0.003730 / 0.000200 (0.003530) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024093 / 0.037411 (-0.013318) | 0.098718 / 0.014526 (0.084192) | 0.105526 / 0.176557 (-0.071030) | 0.141578 / 0.737135 (-0.595557) | 0.109679 / 0.296338 (-0.186660) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412907 / 0.215209 (0.197698) | 4.134934 / 2.077655 (2.057280) | 1.881180 / 1.504120 (0.377060) | 1.693207 / 1.541195 (0.152012) | 1.753725 / 1.468490 (0.285235) | 0.693077 / 4.584777 (-3.891700) | 3.367409 / 3.745712 (-0.378303) | 2.749035 / 5.269862 (-2.520827) | 1.565015 / 4.565676 (-3.000662) | 0.082609 / 0.424275 (-0.341666) | 0.012500 / 0.007607 (0.004892) | 0.523619 / 0.226044 (0.297575) | 5.250188 / 2.268929 (2.981259) | 2.314255 / 55.444624 (-53.130369) | 1.962357 / 6.876477 (-4.914120) | 2.020632 / 2.142072 (-0.121441) | 0.812504 / 4.805227 (-3.992724) | 0.149921 / 6.500664 (-6.350743) | 0.065816 / 0.075469 (-0.009653) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.230811 / 1.841788 (-0.610977) | 14.008566 / 8.074308 (5.934258) | 14.371285 / 10.191392 (4.179893) | 0.166323 / 0.680424 (-0.514101) | 0.029702 / 0.534201 (-0.504499) | 0.408629 / 0.579283 (-0.170654) | 0.410529 / 0.434364 (-0.023835) | 0.484482 / 0.540337 (-0.055855) | 0.572360 / 1.386936 (-0.814576) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006873 / 0.011353 (-0.004480) | 0.004609 / 0.011008 (-0.006400) | 0.075492 / 0.038508 (0.036984) | 0.028560 / 0.023109 (0.005450) | 0.340321 / 0.275898 (0.064423) | 0.376758 / 0.323480 (0.053278) | 0.005271 / 0.007986 (-0.002715) | 0.004786 / 0.004328 (0.000457) | 0.074843 / 0.004250 (0.070592) | 0.041072 / 0.037052 (0.004019) | 0.339952 / 0.258489 (0.081463) | 0.384375 / 0.293841 (0.090534) | 0.031771 / 0.128546 (-0.096775) | 0.011607 / 0.075646 (-0.064039) | 0.084338 / 0.419271 (-0.334933) | 0.042251 / 0.043533 (-0.001282) | 0.338904 / 0.255139 (0.083765) | 0.365360 / 0.283200 (0.082160) | 0.093151 / 0.141683 (-0.048532) | 1.449833 / 1.452155 (-0.002322) | 1.601946 / 1.492716 (0.109229) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225149 / 0.018006 (0.207142) | 0.409855 / 0.000490 (0.409365) | 0.000384 / 0.000200 (0.000184) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025914 / 0.037411 (-0.011497) | 0.100443 / 0.014526 (0.085917) | 0.108557 / 0.176557 (-0.067999) | 0.150338 / 0.737135 (-0.586798) | 0.111472 / 0.296338 (-0.184866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440221 / 0.215209 (0.225012) | 4.409268 / 2.077655 (2.331613) | 2.096008 / 1.504120 (0.591888) | 1.849443 / 1.541195 (0.308248) | 1.934901 / 1.468490 (0.466410) | 0.704072 / 4.584777 (-3.880705) | 3.371370 / 3.745712 (-0.374343) | 3.185478 / 5.269862 (-2.084384) | 1.514541 / 4.565676 (-3.051135) | 0.083724 / 0.424275 (-0.340551) | 0.012674 / 0.007607 (0.005067) | 0.542155 / 0.226044 (0.316111) | 5.413456 / 2.268929 (3.144528) | 2.508567 / 55.444624 (-52.936057) | 2.163235 / 6.876477 (-4.713242) | 2.193914 / 2.142072 (0.051842) | 0.810955 / 4.805227 (-3.994272) | 0.152769 / 6.500664 (-6.347895) | 0.068009 / 0.075469 (-0.007460) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272511 / 1.841788 (-0.569276) | 14.334861 / 8.074308 (6.260553) | 13.555445 / 10.191392 (3.364053) | 0.160520 / 0.680424 (-0.519904) | 0.018363 / 0.534201 (-0.515838) | 0.384937 / 0.579283 (-0.194346) | 0.409138 / 0.434364 (-0.025225) | 0.484037 / 0.540337 (-0.056300) | 0.565595 / 1.386936 (-0.821341) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#23f076ef0187a4009d3c62b14a02e146baf0e35f \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010077 / 0.011353 (-0.001276) | 0.005650 / 0.011008 (-0.005359) | 0.101285 / 0.038508 (0.062777) | 0.039571 / 0.023109 (0.016462) | 0.291855 / 0.275898 (0.015957) | 0.363582 / 0.323480 (0.040102) | 0.008513 / 0.007986 (0.000527) | 0.004472 / 0.004328 (0.000144) | 0.077314 / 0.004250 (0.073064) | 0.050707 / 0.037052 (0.013654) | 0.317282 / 0.258489 (0.058792) | 0.342348 / 0.293841 (0.048507) | 0.042951 / 0.128546 (-0.085595) | 0.012295 / 0.075646 (-0.063351) | 0.337269 / 0.419271 (-0.082003) | 0.048953 / 0.043533 (0.005420) | 0.292547 / 0.255139 (0.037408) | 0.325436 / 0.283200 (0.042236) | 0.111859 / 0.141683 (-0.029824) | 1.501958 / 1.452155 (0.049804) | 1.522281 / 1.492716 (0.029565) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011775 / 0.018006 (-0.006231) | 0.513283 / 0.000490 (0.512793) | 0.002941 / 0.000200 (0.002741) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028702 / 0.037411 (-0.008710) | 0.108465 / 0.014526 (0.093940) | 0.121806 / 0.176557 (-0.054750) | 0.158424 / 0.737135 (-0.578712) | 0.128077 / 0.296338 (-0.168262) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395392 / 0.215209 (0.180183) | 3.944138 / 2.077655 (1.866483) | 1.773698 / 1.504120 (0.269578) | 1.588907 / 1.541195 (0.047712) | 1.697794 / 1.468490 (0.229304) | 0.690281 / 4.584777 (-3.894496) | 3.819661 / 3.745712 (0.073948) | 3.228006 / 5.269862 (-2.041856) | 1.755625 / 4.565676 (-2.810052) | 0.083169 / 0.424275 (-0.341106) | 0.012337 / 0.007607 (0.004730) | 0.504730 / 0.226044 (0.278686) | 5.016916 / 2.268929 (2.747988) | 2.245484 / 55.444624 (-53.199141) | 1.911682 / 6.876477 (-4.964795) | 1.957659 / 2.142072 (-0.184413) | 0.818361 / 4.805227 (-3.986866) | 0.162386 / 6.500664 (-6.338279) | 0.062461 / 0.075469 (-0.013008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197654 / 1.841788 (-0.644134) | 15.465611 / 8.074308 (7.391303) | 14.409126 / 10.191392 (4.217734) | 0.171776 / 0.680424 (-0.508647) | 0.028749 / 0.534201 (-0.505452) | 0.439666 / 0.579283 (-0.139618) | 0.445159 / 0.434364 (0.010795) | 0.543992 / 0.540337 (0.003655) | 0.643911 / 1.386936 (-0.743025) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007036 / 0.011353 (-0.004317) | 0.005273 / 0.011008 (-0.005735) | 0.075314 / 0.038508 (0.036806) | 0.033075 / 0.023109 (0.009966) | 0.350133 / 0.275898 (0.074235) | 0.399366 / 0.323480 (0.075886) | 0.005945 / 0.007986 (-0.002041) | 0.004276 / 0.004328 (-0.000052) | 0.074975 / 0.004250 (0.070725) | 0.051758 / 0.037052 (0.014706) | 0.355077 / 0.258489 (0.096588) | 0.430296 / 0.293841 (0.136455) | 0.036257 / 0.128546 (-0.092290) | 0.012376 / 0.075646 (-0.063270) | 0.087441 / 0.419271 (-0.331830) | 0.049066 / 0.043533 (0.005534) | 0.339867 / 0.255139 (0.084728) | 0.384379 / 0.283200 (0.101179) | 0.104843 / 0.141683 (-0.036840) | 1.498897 / 1.452155 (0.046742) | 1.551400 / 1.492716 (0.058684) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.334504 / 0.018006 (0.316498) | 0.516551 / 0.000490 (0.516061) | 0.000450 / 0.000200 (0.000250) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029313 / 0.037411 (-0.008099) | 0.110667 / 0.014526 (0.096141) | 0.124001 / 0.176557 (-0.052556) | 0.159154 / 0.737135 (-0.577981) | 0.129503 / 0.296338 (-0.166836) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416749 / 0.215209 (0.201540) | 4.171163 / 2.077655 (2.093508) | 1.981071 / 1.504120 (0.476951) | 1.788303 / 1.541195 (0.247108) | 1.912118 / 1.468490 (0.443628) | 0.708764 / 4.584777 (-3.876013) | 3.815222 / 3.745712 (0.069510) | 2.121633 / 5.269862 (-3.148229) | 1.347866 / 4.565676 (-3.217811) | 0.086340 / 0.424275 (-0.337935) | 0.012646 / 0.007607 (0.005039) | 0.525286 / 0.226044 (0.299241) | 5.254922 / 2.268929 (2.985994) | 2.488743 / 55.444624 (-52.955881) | 2.128069 / 6.876477 (-4.748408) | 2.180358 / 2.142072 (0.038286) | 0.841011 / 4.805227 (-3.964216) | 0.168732 / 6.500664 (-6.331932) | 0.065559 / 0.075469 (-0.009910) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270518 / 1.841788 (-0.571270) | 15.557563 / 8.074308 (7.483255) | 13.660757 / 10.191392 (3.469365) | 0.185636 / 0.680424 (-0.494788) | 0.018152 / 0.534201 (-0.516049) | 0.423553 / 0.579283 (-0.155730) | 0.412718 / 0.434364 (-0.021646) | 0.528455 / 0.540337 (-0.011882) | 0.635274 / 1.386936 (-0.751662) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d40f05ef827c52344a2c6e83f7c8d13bb6b660d3 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011194 / 0.011353 (-0.000159) | 0.006344 / 0.011008 (-0.004664) | 0.122013 / 0.038508 (0.083505) | 0.044323 / 0.023109 (0.021214) | 0.356665 / 0.275898 (0.080767) | 0.439871 / 0.323480 (0.116391) | 0.010694 / 0.007986 (0.002709) | 0.004648 / 0.004328 (0.000320) | 0.091140 / 0.004250 (0.086890) | 0.052457 / 0.037052 (0.015404) | 0.369282 / 0.258489 (0.110793) | 0.403279 / 0.293841 (0.109438) | 0.054075 / 0.128546 (-0.074472) | 0.014484 / 0.075646 (-0.061162) | 0.407932 / 0.419271 (-0.011340) | 0.060681 / 0.043533 (0.017148) | 0.350889 / 0.255139 (0.095750) | 0.392041 / 0.283200 (0.108841) | 0.121252 / 0.141683 (-0.020431) | 1.809527 / 1.452155 (0.357373) | 1.835141 / 1.492716 (0.342425) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227372 / 0.018006 (0.209366) | 0.481908 / 0.000490 (0.481418) | 0.007262 / 0.000200 (0.007062) | 0.000148 / 0.000054 (0.000093) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031039 / 0.037411 (-0.006372) | 0.133947 / 0.014526 (0.119421) | 0.141935 / 0.176557 (-0.034622) | 0.197854 / 0.737135 (-0.539281) | 0.152393 / 0.296338 (-0.143945) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.517400 / 0.215209 (0.302191) | 4.899972 / 2.077655 (2.822317) | 2.171023 / 1.504120 (0.666903) | 2.008706 / 1.541195 (0.467511) | 1.988777 / 1.468490 (0.520287) | 0.859872 / 4.584777 (-3.724905) | 4.673923 / 3.745712 (0.928211) | 2.703189 / 5.269862 (-2.566672) | 1.891680 / 4.565676 (-2.673997) | 0.109601 / 0.424275 (-0.314674) | 0.014622 / 0.007607 (0.007015) | 0.618990 / 0.226044 (0.392946) | 6.255608 / 2.268929 (3.986679) | 2.822199 / 55.444624 (-52.622425) | 2.457684 / 6.876477 (-4.418793) | 2.500041 / 2.142072 (0.357968) | 1.054529 / 4.805227 (-3.750698) | 0.209501 / 6.500664 (-6.291163) | 0.074929 / 0.075469 (-0.000540) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.532780 / 1.841788 (-0.309008) | 19.159455 / 8.074308 (11.085147) | 17.817063 / 10.191392 (7.625671) | 0.194078 / 0.680424 (-0.486346) | 0.038211 / 0.534201 (-0.495990) | 0.537366 / 0.579283 (-0.041917) | 0.538995 / 0.434364 (0.104631) | 0.679431 / 0.540337 (0.139094) | 0.801960 / 1.386936 (-0.584976) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008729 / 0.011353 (-0.002624) | 0.005711 / 0.011008 (-0.005297) | 0.091570 / 0.038508 (0.053062) | 0.039805 / 0.023109 (0.016696) | 0.413507 / 0.275898 (0.137609) | 0.456342 / 0.323480 (0.132862) | 0.006201 / 0.007986 (-0.001785) | 0.009700 / 0.004328 (0.005372) | 0.089146 / 0.004250 (0.084896) | 0.057543 / 0.037052 (0.020490) | 0.420806 / 0.258489 (0.162317) | 0.471962 / 0.293841 (0.178121) | 0.043940 / 0.128546 (-0.084606) | 0.014457 / 0.075646 (-0.061190) | 0.106674 / 0.419271 (-0.312598) | 0.058930 / 0.043533 (0.015397) | 0.419111 / 0.255139 (0.163972) | 0.452974 / 0.283200 (0.169774) | 0.124573 / 0.141683 (-0.017110) | 1.864753 / 1.452155 (0.412599) | 1.935387 / 1.492716 (0.442670) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275657 / 0.018006 (0.257651) | 0.498096 / 0.000490 (0.497606) | 0.000480 / 0.000200 (0.000280) | 0.000066 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034377 / 0.037411 (-0.003035) | 0.138050 / 0.014526 (0.123524) | 0.153718 / 0.176557 (-0.022838) | 0.201445 / 0.737135 (-0.535690) | 0.160346 / 0.296338 (-0.135992) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.540670 / 0.215209 (0.325461) | 5.376291 / 2.077655 (3.298636) | 2.581799 / 1.504120 (1.077679) | 2.328858 / 1.541195 (0.787663) | 2.446458 / 1.468490 (0.977968) | 0.923005 / 4.584777 (-3.661772) | 4.815977 / 3.745712 (1.070265) | 4.205725 / 5.269862 (-1.064137) | 2.400466 / 4.565676 (-2.165211) | 0.107207 / 0.424275 (-0.317068) | 0.015427 / 0.007607 (0.007819) | 0.657267 / 0.226044 (0.431222) | 6.491256 / 2.268929 (4.222327) | 3.179099 / 55.444624 (-52.265525) | 2.722434 / 6.876477 (-4.154042) | 2.788202 / 2.142072 (0.646129) | 1.060016 / 4.805227 (-3.745211) | 0.206899 / 6.500664 (-6.293766) | 0.077868 / 0.075469 (0.002399) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.567894 / 1.841788 (-0.273893) | 19.314330 / 8.074308 (11.240022) | 17.597614 / 10.191392 (7.406222) | 0.195777 / 0.680424 (-0.484647) | 0.022160 / 0.534201 (-0.512041) | 0.530592 / 0.579283 (-0.048691) | 0.508591 / 0.434364 (0.074227) | 0.619794 / 0.540337 (0.079457) | 0.749773 / 1.386936 (-0.637163) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8637141a67639c510294620306c9bb25d31d34ef \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012431 / 0.011353 (0.001078) | 0.006526 / 0.011008 (-0.004482) | 0.132266 / 0.038508 (0.093757) | 0.043199 / 0.023109 (0.020089) | 0.405230 / 0.275898 (0.129332) | 0.494643 / 0.323480 (0.171163) | 0.009927 / 0.007986 (0.001941) | 0.005227 / 0.004328 (0.000899) | 0.110914 / 0.004250 (0.106664) | 0.047815 / 0.037052 (0.010763) | 0.419099 / 0.258489 (0.160610) | 0.463405 / 0.293841 (0.169564) | 0.057858 / 0.128546 (-0.070688) | 0.018918 / 0.075646 (-0.056728) | 0.450584 / 0.419271 (0.031313) | 0.060457 / 0.043533 (0.016924) | 0.408234 / 0.255139 (0.153095) | 0.433722 / 0.283200 (0.150523) | 0.119403 / 0.141683 (-0.022280) | 1.966742 / 1.452155 (0.514587) | 1.980685 / 1.492716 (0.487969) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292853 / 0.018006 (0.274847) | 0.619697 / 0.000490 (0.619207) | 0.002135 / 0.000200 (0.001935) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031283 / 0.037411 (-0.006129) | 0.128649 / 0.014526 (0.114123) | 0.150116 / 0.176557 (-0.026441) | 0.187605 / 0.737135 (-0.549530) | 0.153334 / 0.296338 (-0.143005) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.659660 / 0.215209 (0.444451) | 6.459749 / 2.077655 (4.382094) | 2.764566 / 1.504120 (1.260446) | 2.362630 / 1.541195 (0.821435) | 2.426421 / 1.468490 (0.957931) | 1.282407 / 4.584777 (-3.302370) | 5.668865 / 3.745712 (1.923153) | 3.236255 / 5.269862 (-2.033606) | 2.248836 / 4.565676 (-2.316841) | 0.145861 / 0.424275 (-0.278414) | 0.015707 / 0.007607 (0.008100) | 0.805218 / 0.226044 (0.579174) | 8.146831 / 2.268929 (5.877903) | 3.506283 / 55.444624 (-51.938341) | 2.736682 / 6.876477 (-4.139795) | 2.959039 / 2.142072 (0.816967) | 1.528428 / 4.805227 (-3.276799) | 0.270980 / 6.500664 (-6.229684) | 0.086824 / 0.075469 (0.011355) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.682506 / 1.841788 (-0.159282) | 18.844103 / 8.074308 (10.769795) | 21.008471 / 10.191392 (10.817079) | 0.258372 / 0.680424 (-0.422052) | 0.046505 / 0.534201 (-0.487696) | 0.574760 / 0.579283 (-0.004523) | 0.663745 / 0.434364 (0.229381) | 0.702411 / 0.540337 (0.162074) | 0.824024 / 1.386936 (-0.562912) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010016 / 0.011353 (-0.001337) | 0.007459 / 0.011008 (-0.003549) | 0.103954 / 0.038508 (0.065446) | 0.036363 / 0.023109 (0.013254) | 0.464079 / 0.275898 (0.188181) | 0.504730 / 0.323480 (0.181250) | 0.007865 / 0.007986 (-0.000121) | 0.005210 / 0.004328 (0.000882) | 0.105018 / 0.004250 (0.100767) | 0.062191 / 0.037052 (0.025139) | 0.483304 / 0.258489 (0.224815) | 0.547030 / 0.293841 (0.253189) | 0.055436 / 0.128546 (-0.073110) | 0.021073 / 0.075646 (-0.054573) | 0.120952 / 0.419271 (-0.298319) | 0.075593 / 0.043533 (0.032060) | 0.459930 / 0.255139 (0.204791) | 0.486924 / 0.283200 (0.203724) | 0.129465 / 0.141683 (-0.012218) | 1.902322 / 1.452155 (0.450167) | 1.980809 / 1.492716 (0.488092) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259263 / 0.018006 (0.241257) | 0.596703 / 0.000490 (0.596213) | 0.004520 / 0.000200 (0.004320) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032802 / 0.037411 (-0.004609) | 0.138751 / 0.014526 (0.124225) | 0.147106 / 0.176557 (-0.029451) | 0.194791 / 0.737135 (-0.542345) | 0.152643 / 0.296338 (-0.143696) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.678455 / 0.215209 (0.463246) | 6.673643 / 2.077655 (4.595989) | 2.943368 / 1.504120 (1.439248) | 2.591223 / 1.541195 (1.050029) | 2.741097 / 1.468490 (1.272607) | 1.261178 / 4.584777 (-3.323599) | 5.773853 / 3.745712 (2.028141) | 3.171559 / 5.269862 (-2.098303) | 2.124898 / 4.565676 (-2.440779) | 0.161849 / 0.424275 (-0.262426) | 0.015498 / 0.007607 (0.007891) | 0.857984 / 0.226044 (0.631940) | 8.456946 / 2.268929 (6.188018) | 3.818787 / 55.444624 (-51.625837) | 3.009953 / 6.876477 (-3.866523) | 3.113006 / 2.142072 (0.970934) | 1.477299 / 4.805227 (-3.327929) | 0.267207 / 6.500664 (-6.233457) | 0.087590 / 0.075469 (0.012121) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.757389 / 1.841788 (-0.084398) | 19.287690 / 8.074308 (11.213381) | 21.601991 / 10.191392 (11.410599) | 0.260464 / 0.680424 (-0.419960) | 0.028552 / 0.534201 (-0.505649) | 0.558934 / 0.579283 (-0.020349) | 0.673651 / 0.434364 (0.239287) | 0.714448 / 0.540337 (0.174111) | 0.857608 / 1.386936 (-0.529328) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2d3bd0134de444ffd10c4a39873dbf9aa3732c08 \"CML watermark\")\n", "Ready for review @mariosasko, LMKWYT :)\r\n\r\nSorry it tooks me a few tries to fix the CI - I ended up not trying to use the latest `torch` version in the CI.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009474 / 0.011353 (-0.001878) | 0.005507 / 0.011008 (-0.005501) | 0.101219 / 0.038508 (0.062711) | 0.035591 / 0.023109 (0.012481) | 0.305841 / 0.275898 (0.029943) | 0.339135 / 0.323480 (0.015656) | 0.007920 / 0.007986 (-0.000066) | 0.004252 / 0.004328 (-0.000077) | 0.076912 / 0.004250 (0.072662) | 0.041923 / 0.037052 (0.004871) | 0.301405 / 0.258489 (0.042916) | 0.356488 / 0.293841 (0.062647) | 0.039342 / 0.128546 (-0.089204) | 0.012711 / 0.075646 (-0.062935) | 0.334193 / 0.419271 (-0.085079) | 0.049112 / 0.043533 (0.005579) | 0.301484 / 0.255139 (0.046345) | 0.315306 / 0.283200 (0.032106) | 0.102959 / 0.141683 (-0.038724) | 1.420677 / 1.452155 (-0.031478) | 1.549493 / 1.492716 (0.056777) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284639 / 0.018006 (0.266633) | 0.501226 / 0.000490 (0.500736) | 0.004328 / 0.000200 (0.004128) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027034 / 0.037411 (-0.010377) | 0.108066 / 0.014526 (0.093540) | 0.122106 / 0.176557 (-0.054451) | 0.162908 / 0.737135 (-0.574227) | 0.127233 / 0.296338 (-0.169105) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394023 / 0.215209 (0.178813) | 3.932729 / 2.077655 (1.855075) | 1.771195 / 1.504120 (0.267075) | 1.582788 / 1.541195 (0.041594) | 1.703219 / 1.468490 (0.234728) | 0.702629 / 4.584777 (-3.882148) | 3.780187 / 3.745712 (0.034475) | 2.180433 / 5.269862 (-3.089428) | 1.504806 / 4.565676 (-3.060871) | 0.085289 / 0.424275 (-0.338986) | 0.012580 / 0.007607 (0.004973) | 0.515408 / 0.226044 (0.289363) | 5.010613 / 2.268929 (2.741685) | 2.256648 / 55.444624 (-53.187976) | 1.914971 / 6.876477 (-4.961505) | 2.038436 / 2.142072 (-0.103636) | 0.846240 / 4.805227 (-3.958987) | 0.164920 / 6.500664 (-6.335744) | 0.063899 / 0.075469 (-0.011570) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224160 / 1.841788 (-0.617627) | 15.089995 / 8.074308 (7.015687) | 14.777003 / 10.191392 (4.585611) | 0.169873 / 0.680424 (-0.510551) | 0.029233 / 0.534201 (-0.504968) | 0.445424 / 0.579283 (-0.133859) | 0.439194 / 0.434364 (0.004830) | 0.536370 / 0.540337 (-0.003968) | 0.636694 / 1.386936 (-0.750242) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008230 / 0.011353 (-0.003122) | 0.005499 / 0.011008 (-0.005509) | 0.076108 / 0.038508 (0.037600) | 0.037444 / 0.023109 (0.014335) | 0.364420 / 0.275898 (0.088522) | 0.412308 / 0.323480 (0.088828) | 0.006704 / 0.007986 (-0.001282) | 0.004359 / 0.004328 (0.000031) | 0.075080 / 0.004250 (0.070830) | 0.057698 / 0.037052 (0.020646) | 0.366088 / 0.258489 (0.107599) | 0.409583 / 0.293841 (0.115742) | 0.037882 / 0.128546 (-0.090664) | 0.012421 / 0.075646 (-0.063225) | 0.087701 / 0.419271 (-0.331571) | 0.050669 / 0.043533 (0.007136) | 0.351139 / 0.255139 (0.096000) | 0.384340 / 0.283200 (0.101140) | 0.108097 / 0.141683 (-0.033586) | 1.445010 / 1.452155 (-0.007145) | 1.559570 / 1.492716 (0.066853) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.324114 / 0.018006 (0.306108) | 0.549134 / 0.000490 (0.548644) | 0.003544 / 0.000200 (0.003344) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030646 / 0.037411 (-0.006765) | 0.108573 / 0.014526 (0.094047) | 0.125291 / 0.176557 (-0.051266) | 0.174798 / 0.737135 (-0.562338) | 0.128000 / 0.296338 (-0.168338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428881 / 0.215209 (0.213672) | 4.282320 / 2.077655 (2.204665) | 2.061462 / 1.504120 (0.557342) | 1.858477 / 1.541195 (0.317283) | 1.971646 / 1.468490 (0.503156) | 0.723631 / 4.584777 (-3.861146) | 3.822376 / 3.745712 (0.076664) | 2.174427 / 5.269862 (-3.095434) | 1.386066 / 4.565676 (-3.179611) | 0.088391 / 0.424275 (-0.335884) | 0.012948 / 0.007607 (0.005341) | 0.524423 / 0.226044 (0.298378) | 5.249389 / 2.268929 (2.980460) | 2.528662 / 55.444624 (-52.915962) | 2.245329 / 6.876477 (-4.631147) | 2.402733 / 2.142072 (0.260660) | 0.868864 / 4.805227 (-3.936364) | 0.174066 / 6.500664 (-6.326598) | 0.066165 / 0.075469 (-0.009304) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.296922 / 1.841788 (-0.544865) | 15.814109 / 8.074308 (7.739801) | 14.086059 / 10.191392 (3.894667) | 0.190952 / 0.680424 (-0.489472) | 0.017679 / 0.534201 (-0.516522) | 0.428872 / 0.579283 (-0.150411) | 0.435399 / 0.434364 (0.001035) | 0.540856 / 0.540337 (0.000519) | 0.648904 / 1.386936 (-0.738032) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f401758c5019ede4404994d5d59220125984874d \"CML watermark\")\n" ]
2023-02-08T13:38:59
2023-02-19T18:35:09
2023-02-19T18:27:29
I implemented `__getitems__` to speed up batched data loading in PyTorch close https://github.com/huggingface/datasets/issues/5505
lhoestq
https://github.com/huggingface/datasets/pull/5512
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5512", "html_url": "https://github.com/huggingface/datasets/pull/5512", "diff_url": "https://github.com/huggingface/datasets/pull/5512.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5512.patch", "merged_at": "2023-02-19T18:27:29" }
true
1,575,851,768
5,511
Creating a dummy dataset from a bigger one
closed
[ "Update `datasets` or downgrade `huggingface-hub` ;)\r\n\r\nThe `huggingface-hub` lib did a breaking change a few months ago, and you're using an old version of `datasets` that does't support it", "Awesome thanks a lot! Everything works just fine with `datasets==2.9.0` :-) ", "Getting same error with latest versions.\r\n\r\n\r\n```shell\r\n---------------------------------------------------------------------------\r\nTypeError Traceback (most recent call last)\r\nCell In[99], line 1\r\n----> 1 dataset.push_to_hub(\"mirfan899/kids_phoneme_asr\")\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:3538, in Dataset.push_to_hub(self, repo_id, split, private, token, branch, shard_size, embed_external_files)\r\n 3493 def push_to_hub(\r\n 3494 self,\r\n 3495 repo_id: str,\r\n (...)\r\n 3501 embed_external_files: bool = True,\r\n 3502 ):\r\n 3503 \"\"\"Pushes the dataset to the hub.\r\n 3504 The dataset is pushed using HTTP requests and does not need to have neither git or git-lfs installed.\r\n 3505 \r\n (...)\r\n 3536 ```\r\n 3537 \"\"\"\r\n-> 3538 repo_id, split, uploaded_size, dataset_nbytes = self._push_parquet_shards_to_hub(\r\n 3539 repo_id=repo_id,\r\n 3540 split=split,\r\n 3541 private=private,\r\n 3542 token=token,\r\n 3543 branch=branch,\r\n 3544 shard_size=shard_size,\r\n 3545 embed_external_files=embed_external_files,\r\n 3546 )\r\n 3547 organization, dataset_name = repo_id.split(\"/\")\r\n 3548 info_to_dump = self.info.copy()\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:3474, in Dataset._push_parquet_shards_to_hub(self, repo_id, split, private, token, branch, shard_size, embed_external_files)\r\n 3472 shard.to_parquet(buffer)\r\n 3473 uploaded_size += buffer.tell()\r\n-> 3474 _retry(\r\n 3475 api.upload_file,\r\n 3476 func_kwargs=dict(\r\n 3477 path_or_fileobj=buffer.getvalue(),\r\n 3478 path_in_repo=path_in_repo(index),\r\n 3479 repo_id=repo_id,\r\n 3480 token=token,\r\n 3481 repo_type=\"dataset\",\r\n 3482 revision=branch,\r\n 3483 identical_ok=True,\r\n 3484 ),\r\n 3485 exceptions=HTTPError,\r\n 3486 status_codes=[504],\r\n 3487 base_wait_time=2.0,\r\n 3488 max_retries=5,\r\n 3489 max_wait_time=20.0,\r\n 3490 )\r\n 3491 return repo_id, split, uploaded_size, dataset_nbytes\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/utils/file_utils.py:330, in _retry(func, func_args, func_kwargs, exceptions, status_codes, max_retries, base_wait_time, max_wait_time)\r\n 328 while True:\r\n 329 try:\r\n--> 330 return func(*func_args, **func_kwargs)\r\n 331 except exceptions as err:\r\n 332 if retry >= max_retries or (status_codes and err.response.status_code not in status_codes):\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py:120, in validate_hf_hub_args.<locals>._inner_fn(*args, **kwargs)\r\n 117 if check_use_auth_token:\r\n 118 kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs)\r\n--> 120 return fn(*args, **kwargs)\r\n\r\nTypeError: HfApi.upload_file() got an unexpected keyword argument 'identical_ok'\r\n```", "Feel free to update `datasets` and `huggingface-hub`, it should fix it :)", "I went ahead and upgraded both datasets and hub and still getting the same error\r\n", "Which version do you have ? It's been a while since it has been fixed", "huggingface 0.0.1\r\nhuggingface-hub 0.17.1\r\ndatasets 2.14.5\r\n\r\nstill has the issue!!", "I face the same issue even after upgrading :/" ]
2023-02-08T10:18:41
2023-12-28T18:21:01
2023-02-08T10:35:48
### Describe the bug I often want to create a dummy dataset from a bigger dataset for fast iteration when training. However, I'm having a hard time doing this especially when trying to upload the dataset to the Hub. ### Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("lambdalabs/pokemon-blip-captions") dataset["train"] = dataset["train"].select(range(20)) dataset.push_to_hub("patrickvonplaten/dummy_image_data") ``` gives: ``` ~/python_bin/datasets/arrow_dataset.py in _push_parquet_shards_to_hub(self, repo_id, split, private, token, branch, max_shard_size, embed_external_files) 4003 base_wait_time=2.0, 4004 max_retries=5, -> 4005 max_wait_time=20.0, 4006 ) 4007 return repo_id, split, uploaded_size, dataset_nbytes ~/python_bin/datasets/utils/file_utils.py in _retry(func, func_args, func_kwargs, exceptions, status_codes, max_retries, base_wait_time, max_wait_time) 328 while True: 329 try: --> 330 return func(*func_args, **func_kwargs) 331 except exceptions as err: 332 if retry >= max_retries or (status_codes and err.response.status_code not in status_codes): ~/hf/lib/python3.7/site-packages/huggingface_hub/utils/_validators.py in _inner_fn(*args, **kwargs) 122 ) 123 --> 124 return fn(*args, **kwargs) 125 126 return _inner_fn # type: ignore TypeError: upload_file() got an unexpected keyword argument 'identical_ok' In [2]: ``` ### Expected behavior I would have expected this to work. It's for me the most intuitive way of creating a dummy dataset. ### Environment info ``` - `datasets` version: 2.1.1.dev0 - Platform: Linux-4.19.0-22-cloud-amd64-x86_64-with-debian-10.13 - Python version: 3.7.3 - PyArrow version: 11.0.0 - Pandas version: 1.3.5 ```
patrickvonplaten
https://github.com/huggingface/datasets/issues/5511
null
false
1,575,191,549
5,510
Milvus integration for search
open
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5510). All of your documentation changes will be reflected on that endpoint.", "To the maintainer, sorry about the repeated run requests for formatting. Missed the `make style` outlined in contributing guidelines. ", "Anything I can do to get the workflow to run? @lhoestq ", "cc @mariosasko \r\n\r\n> Anything I can do to get the workflow to run?\r\n\r\nYou can merge `main` into your branch to fix code formatting (we switched from isort+flake8 to ruff this week), and then run `make style`", "I believe that should be good. @mariosasko" ]
2023-02-07T23:30:26
2023-02-24T16:45:09
null
Signed-off-by: Filip Haltmayer <filip.haltmayer@zilliz.com>
filip-halt
https://github.com/huggingface/datasets/pull/5510
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5510", "html_url": "https://github.com/huggingface/datasets/pull/5510", "diff_url": "https://github.com/huggingface/datasets/pull/5510.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5510.patch", "merged_at": null }
true
1,574,177,320
5,509
Add a static `__all__` to `__init__.py` for typecheckers
open
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5509). All of your documentation changes will be reflected on that endpoint.", "Hi! I've commented on the original issue to provide some context. Feel free to share your opinion there." ]
2023-02-07T11:42:40
2023-02-08T17:48:24
null
This adds a static `__all__` field to `__init__.py`, allowing typecheckers to know which symbols are accessible from `datasets` at runtime. In particular [Pyright](https://github.com/microsoft/pylance-release/issues/2328#issuecomment-1029381258) seems to rely on this. At this point I have added all (modulo oversight) the symbols mentioned in the Reference part of [the docs](https://huggingface.co/docs/datasets), but that could be adjusted. As a side effect, only these symbols will be imported by `from datasets import *`, which may or may not be a good thing (and if it isn't, that's easy to fix). Another option would be to add a pyi stub, but I think `__all__` should be the most pythonic solution. This should fix #3841.
LoicGrobol
https://github.com/huggingface/datasets/pull/5509
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5509", "html_url": "https://github.com/huggingface/datasets/pull/5509", "diff_url": "https://github.com/huggingface/datasets/pull/5509.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5509.patch", "merged_at": null }
true
1,573,290,359
5,508
Saving a dataset after setting format to torch doesn't work, but only if filtering
closed
[ "Hey, I'm a research engineer working on language modelling wanting to contribute to open source. I was wondering if I could give it a shot?", "Hi! This issue was fixed in https://github.com/huggingface/datasets/pull/4972, so please install `datasets>=2.5.0` to avoid it." ]
2023-02-06T21:08:58
2023-02-09T14:55:26
2023-02-09T14:55:26
### Describe the bug Saving a dataset after setting format to torch doesn't work, but only if filtering ### Steps to reproduce the bug ``` a = Dataset.from_dict({"b": [1, 2]}) a.set_format('torch') a.save_to_disk("test_save") # saves successfully a.filter(None).save_to_disk("test_save_filter") # does not >> [...] TypeError: Provided `function` which is applied to all elements of table returns a `dict` of types [<class 'torch.Tensor'>]. When using `batched=True`, make sure provided `function` returns a `dict` of types like `(<class 'list'>, <class 'numpy.ndarray'>)`. # note: skipping the format change to torch lets this work. ### Expected behavior Saving to work ### Environment info - `datasets` version: 2.4.0 - Platform: Linux-6.1.9-arch1-1-x86_64-with-glibc2.36 - Python version: 3.10.9 - PyArrow version: 9.0.0 - Pandas version: 1.4.4
joebhakim
https://github.com/huggingface/datasets/issues/5508
null
false
1,572,667,036
5,507
Optimise behaviour in respect to indices mapping
open
[]
2023-02-06T14:25:55
2023-02-28T18:19:18
null
_Originally [posted](https://huggingface.slack.com/archives/C02V51Q3800/p1675443873878489?thread_ts=1675418893.373479&cid=C02V51Q3800) on Slack_ Considering all this, perhaps for Datasets 3.0, we can do the following: * [ ] have `continuous=True` by default in `.shard` (requested in the survey and makes more sense for us since it doesn't create an indices mapping) * [x] allow calling `save_to_disk` on "unflattened" datasets * [ ] remove "hidden" expensive calls in `save_to_disk`, `unique`, `concatenate_datasets`, etc. For instance, instead of silently calling `flatten_indices` where it's needed, it's probably better to be explicit (considering how expensive these ops can be) and raise an error instead
mariosasko
https://github.com/huggingface/datasets/issues/5507
null
false
1,571,838,641
5,506
IterableDataset and Dataset return different batch sizes when using Trainer with multiple GPUs
closed
[ "Hi ! `datasets` doesn't do batching - the PyTorch DataLoader does and is created by the `Trainer`. Do you pass other arguments to training_args with respect to data loading ?\r\n\r\nAlso we recently released `.to_iterable_dataset` that does pretty much what you implemented, but using contiguous shards to get a better speed:\r\n```python\r\nif use_iterable_dataset:\r\n num_shards = 100\r\n dataset = dataset.to_iterable_dataset(num_shards=num_shards)\r\n```", "This is the full set of training args passed. No training args were changed when switching dataset types.\r\n\r\n```python\r\ntraining_args = TrainingArguments(\r\n output_dir=\"./checkpoints\",\r\n overwrite_output_dir=True,\r\n num_train_epochs=1,\r\n per_device_train_batch_size=256,\r\n save_steps=2000,\r\n save_total_limit=4,\r\n prediction_loss_only=True,\r\n report_to='none',\r\n gradient_accumulation_steps=6,\r\n fp16=True,\r\n max_steps=60000,\r\n lr_scheduler_type='linear',\r\n warmup_ratio=0.1,\r\n logging_steps=100,\r\n weight_decay=0.01,\r\n adam_beta1=0.9,\r\n adam_beta2=0.98,\r\n adam_epsilon=1e-6,\r\n learning_rate=1e-4\r\n)\r\n```", "I think the issue comes from `transformers`: https://github.com/huggingface/transformers/issues/21444", "Makes sense. Given that it's a `transformers` issue and already being tracked, I'll close this out." ]
2023-02-06T03:26:03
2023-02-08T18:30:08
2023-02-08T18:30:07
### Describe the bug I am training a Roberta model using 2 GPUs and the `Trainer` API with a batch size of 256. Initially I used a standard `Dataset`, but had issues with slow data loading. After reading [this issue](https://github.com/huggingface/datasets/issues/2252), I swapped to loading my dataset as contiguous shards and passing those to an `IterableDataset`. I observed an unexpected drop in GPU memory utilization, and found the batch size returned from the model had been cut in half. When using `Trainer` with 2 GPUs and a batch size of 256, `Dataset` returns a batch of size 512 (256 per GPU), while `IterableDataset` returns a batch size of 256 (256 total). My guess is `IterableDataset` isn't accounting for multiple cards. ### Steps to reproduce the bug ```python import datasets from datasets import IterableDataset from transformers import RobertaConfig from transformers import RobertaTokenizerFast from transformers import RobertaForMaskedLM from transformers import DataCollatorForLanguageModeling from transformers import Trainer, TrainingArguments use_iterable_dataset = True def gen_from_shards(shards): for shard in shards: for example in shard: yield example dataset = datasets.load_from_disk('my_dataset.hf') if use_iterable_dataset: n_shards = 100 shards = [dataset.shard(num_shards=n_shards, index=i) for i in range(n_shards)] dataset = IterableDataset.from_generator(gen_from_shards, gen_kwargs={"shards": shards}) tokenizer = RobertaTokenizerFast.from_pretrained("./my_tokenizer", max_len=160, use_fast=True) config = RobertaConfig( vocab_size=8248, max_position_embeddings=256, num_attention_heads=8, num_hidden_layers=6, type_vocab_size=1) model = RobertaForMaskedLM(config=config) data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.15) training_args = TrainingArguments( per_device_train_batch_size=256 # other args removed for brevity ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=dataset, ) trainer.train() ``` ### Expected behavior Expected `Dataset` and `IterableDataset` to have the same batch size behavior. If the current behavior is intentional, the batch size printout at the start of training should be updated. Currently, both dataset classes result in `Trainer` printing the same total batch size, even though the batch size sent to the GPUs are different. ### Environment info datasets 2.7.1 transformers 4.25.1
kheyer
https://github.com/huggingface/datasets/issues/5506
null
false
1,571,720,814
5,505
PyTorch BatchSampler still loads from Dataset one-by-one
closed
[ "This change seems to come from a few months ago in the PyTorch side. That's good news and it means we may not need to pass a batch_sampler as soon as we add `Dataset.__getitems__` to get the optimal speed :)\r\n\r\nThanks for reporting ! Would you like to open a PR to add `__getitems__` and remove this outdated documentation ?", "Yeah I figured this was the sort of thing that probably once worked. I can confirm that you no longer need the batch sampler, just `batch_size=n` in the `DataLoader`.\r\n\r\nI'll pass on the PR, I'm flat out right now, sorry." ]
2023-02-06T01:14:55
2023-02-19T18:27:30
2023-02-19T18:27:30
### Describe the bug In [the docs here](https://huggingface.co/docs/datasets/use_with_pytorch#use-a-batchsampler), it mentions the issue of the Dataset being read one-by-one, then states that using a BatchSampler resolves the issue. I'm not sure if this is a mistake in the docs or the code, but it seems that the only way for a Dataset to be passed a list of indexes by PyTorch (instead of one index at a time) is to define a `__getitems__` method (note the plural) on the Dataset object, and since the HF Dataset doesn't have this, PyTorch executes [this line of code](https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/fetch.py#L58), reverting to fetching one-by-one. ### Steps to reproduce the bug You can put a breakpoint in `Dataset.__getitem__()` or just print the args from there and see that it's called multiple times for a single `next(iter(dataloader))`, even when using the code from the docs: ```py from torch.utils.data.sampler import BatchSampler, RandomSampler batch_sampler = BatchSampler(RandomSampler(ds), batch_size=32, drop_last=False) dataloader = DataLoader(ds, batch_sampler=batch_sampler) ``` ### Expected behavior The expected behaviour would be for it to fetch batches from the dataset, rather than one-by-one. To demonstrate that there is room for improvement: once I have a HF dataset `ds`, if I just add this line: ```py ds.__getitems__ = ds.__getitem__ ``` ...then the time taken to loop over the dataset improves considerably (for wikitext-103, from one minute to 13 seconds with batch size 32). Probably not a big deal in the grand scheme of things, but seems like an easy win. ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 - Python version: 3.10.8 - PyArrow version: 10.0.1 - Pandas version: 1.5.3
davidgilbertson
https://github.com/huggingface/datasets/issues/5505
null
false
1,570,621,242
5,504
don't zero copy timestamps
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008606 / 0.011353 (-0.002747) | 0.004659 / 0.011008 (-0.006349) | 0.101311 / 0.038508 (0.062802) | 0.029664 / 0.023109 (0.006555) | 0.321850 / 0.275898 (0.045952) | 0.380497 / 0.323480 (0.057017) | 0.007003 / 0.007986 (-0.000982) | 0.003393 / 0.004328 (-0.000936) | 0.078704 / 0.004250 (0.074453) | 0.035810 / 0.037052 (-0.001242) | 0.327271 / 0.258489 (0.068782) | 0.369302 / 0.293841 (0.075461) | 0.033625 / 0.128546 (-0.094921) | 0.011563 / 0.075646 (-0.064084) | 0.323950 / 0.419271 (-0.095322) | 0.040660 / 0.043533 (-0.002872) | 0.327211 / 0.255139 (0.072072) | 0.350325 / 0.283200 (0.067125) | 0.085427 / 0.141683 (-0.056256) | 1.464370 / 1.452155 (0.012216) | 1.490355 / 1.492716 (-0.002362) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202879 / 0.018006 (0.184873) | 0.419836 / 0.000490 (0.419346) | 0.000303 / 0.000200 (0.000103) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023336 / 0.037411 (-0.014075) | 0.096817 / 0.014526 (0.082291) | 0.103990 / 0.176557 (-0.072567) | 0.137749 / 0.737135 (-0.599386) | 0.108236 / 0.296338 (-0.188102) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420801 / 0.215209 (0.205592) | 4.205308 / 2.077655 (2.127653) | 2.050363 / 1.504120 (0.546243) | 1.877390 / 1.541195 (0.336195) | 2.031060 / 1.468490 (0.562570) | 0.687950 / 4.584777 (-3.896827) | 3.363202 / 3.745712 (-0.382510) | 1.869482 / 5.269862 (-3.400379) | 1.159131 / 4.565676 (-3.406545) | 0.082374 / 0.424275 (-0.341901) | 0.012425 / 0.007607 (0.004818) | 0.519775 / 0.226044 (0.293731) | 5.244612 / 2.268929 (2.975684) | 2.371314 / 55.444624 (-53.073311) | 2.052713 / 6.876477 (-4.823764) | 2.190015 / 2.142072 (0.047942) | 0.803806 / 4.805227 (-4.001421) | 0.148110 / 6.500664 (-6.352554) | 0.064174 / 0.075469 (-0.011295) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.250424 / 1.841788 (-0.591364) | 13.487870 / 8.074308 (5.413561) | 13.080736 / 10.191392 (2.889344) | 0.147715 / 0.680424 (-0.532709) | 0.028409 / 0.534201 (-0.505792) | 0.397531 / 0.579283 (-0.181752) | 0.399458 / 0.434364 (-0.034905) | 0.461467 / 0.540337 (-0.078871) | 0.541639 / 1.386936 (-0.845297) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006753 / 0.011353 (-0.004600) | 0.004573 / 0.011008 (-0.006435) | 0.076122 / 0.038508 (0.037614) | 0.027529 / 0.023109 (0.004419) | 0.341291 / 0.275898 (0.065393) | 0.376889 / 0.323480 (0.053409) | 0.005032 / 0.007986 (-0.002953) | 0.003447 / 0.004328 (-0.000882) | 0.075186 / 0.004250 (0.070936) | 0.038516 / 0.037052 (0.001463) | 0.340927 / 0.258489 (0.082438) | 0.386626 / 0.293841 (0.092785) | 0.031929 / 0.128546 (-0.096617) | 0.011759 / 0.075646 (-0.063888) | 0.085616 / 0.419271 (-0.333656) | 0.042858 / 0.043533 (-0.000674) | 0.341881 / 0.255139 (0.086742) | 0.367502 / 0.283200 (0.084303) | 0.090788 / 0.141683 (-0.050895) | 1.472871 / 1.452155 (0.020716) | 1.577825 / 1.492716 (0.085109) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233137 / 0.018006 (0.215131) | 0.415016 / 0.000490 (0.414526) | 0.000379 / 0.000200 (0.000179) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024966 / 0.037411 (-0.012445) | 0.102794 / 0.014526 (0.088268) | 0.107543 / 0.176557 (-0.069014) | 0.143133 / 0.737135 (-0.594002) | 0.111494 / 0.296338 (-0.184845) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438354 / 0.215209 (0.223145) | 4.382244 / 2.077655 (2.304589) | 2.056340 / 1.504120 (0.552220) | 1.851524 / 1.541195 (0.310330) | 1.933147 / 1.468490 (0.464657) | 0.701446 / 4.584777 (-3.883331) | 3.396893 / 3.745712 (-0.348819) | 2.837516 / 5.269862 (-2.432346) | 1.538298 / 4.565676 (-3.027379) | 0.083449 / 0.424275 (-0.340826) | 0.012793 / 0.007607 (0.005186) | 0.539661 / 0.226044 (0.313616) | 5.428415 / 2.268929 (3.159487) | 2.527582 / 55.444624 (-52.917042) | 2.172795 / 6.876477 (-4.703682) | 2.220011 / 2.142072 (0.077938) | 0.814338 / 4.805227 (-3.990889) | 0.153468 / 6.500664 (-6.347196) | 0.069056 / 0.075469 (-0.006413) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278434 / 1.841788 (-0.563354) | 14.284924 / 8.074308 (6.210616) | 13.486596 / 10.191392 (3.295203) | 0.138457 / 0.680424 (-0.541967) | 0.016609 / 0.534201 (-0.517592) | 0.382828 / 0.579283 (-0.196455) | 0.387604 / 0.434364 (-0.046760) | 0.478801 / 0.540337 (-0.061536) | 0.565352 / 1.386936 (-0.821584) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c39ba501daab763b9972f44f229c66d900d20bee \"CML watermark\")\n", "> Thanks! I modified the test a bit to make it more consistent with the rest of the \"extractor\" tests.\r\n\r\nAppreciate the assist on the tests! ๐Ÿš€ " ]
2023-02-03T23:39:04
2023-02-08T17:28:50
2023-02-08T14:33:17
Fixes https://github.com/huggingface/datasets/issues/5495 I'm not sure whether we prefer a test here or if timestamps are known to be unsupported (like booleans). The current test at least covers the bug
dwyatte
https://github.com/huggingface/datasets/pull/5504
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5504", "html_url": "https://github.com/huggingface/datasets/pull/5504", "diff_url": "https://github.com/huggingface/datasets/pull/5504.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5504.patch", "merged_at": "2023-02-08T14:33:17" }
true
1,570,091,225
5,502
Added functionality: sort datasets by multiple keys
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "> Thanks! I've left some comments.\r\n> \r\n> We should also add some tests, mainly to make sure `reverse` behaves as expected. Let me know if you need help with that.\r\n\r\nThanks for the offer! I couldn't find any guidelines on how huggingface goes about testing, so it would indeed be great to get a few pointers on that. I assume I should expand on the `test_sort` function in `test_arrow_dataset.py` but since I am not very familiar with the `datasets` package, it isn't immediately for which cases I should test (i.e., expand on).", "@MichlF \r\n\r\nResolving a comment means that the comment has been addressed with the code change, so since this is not the case here, can you please \"unresolve\" the comments and address them adequately? \r\n\r\n> I assume I should expand on the `test_sort` function in `test_arrow_dataset.py`\r\n\r\nYes, that's correct. I think one test to check sorting on multiple keys and another one to check if an error is raised when `len(reverse)!=len(column_names)` should be enough.\r\n", "> Yes, that's correct. I think one test to check sorting on multiple keys and another one to check if an error is raised when `len(reverse)!=len(column_names)` should be enough.\r\n\r\nI have added the tests in https://github.com/huggingface/datasets/pull/5502/commits/0efa259732e822e94d67b96a70031a3daccedfc1 by keeping them in the same format of the tests of the old `sort` function. Let me know if they can be improved.\r\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010170 / 0.011353 (-0.001183) | 0.005891 / 0.011008 (-0.005117) | 0.100416 / 0.038508 (0.061908) | 0.041309 / 0.023109 (0.018200) | 0.300813 / 0.275898 (0.024915) | 0.376679 / 0.323480 (0.053199) | 0.008806 / 0.007986 (0.000821) | 0.005964 / 0.004328 (0.001636) | 0.075862 / 0.004250 (0.071611) | 0.050370 / 0.037052 (0.013318) | 0.313365 / 0.258489 (0.054876) | 0.351184 / 0.293841 (0.057343) | 0.039556 / 0.128546 (-0.088991) | 0.012462 / 0.075646 (-0.063185) | 0.337141 / 0.419271 (-0.082130) | 0.049678 / 0.043533 (0.006145) | 0.298547 / 0.255139 (0.043408) | 0.317547 / 0.283200 (0.034347) | 0.113595 / 0.141683 (-0.028088) | 1.448467 / 1.452155 (-0.003688) | 1.501303 / 1.492716 (0.008587) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011005 / 0.018006 (-0.007002) | 0.527430 / 0.000490 (0.526940) | 0.005073 / 0.000200 (0.004873) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030377 / 0.037411 (-0.007034) | 0.116932 / 0.014526 (0.102406) | 0.124047 / 0.176557 (-0.052509) | 0.192358 / 0.737135 (-0.544777) | 0.130528 / 0.296338 (-0.165811) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401158 / 0.215209 (0.185949) | 4.005854 / 2.077655 (1.928200) | 1.810365 / 1.504120 (0.306245) | 1.626490 / 1.541195 (0.085295) | 1.752591 / 1.468490 (0.284101) | 0.709065 / 4.584777 (-3.875712) | 3.893356 / 3.745712 (0.147643) | 3.655180 / 5.269862 (-1.614682) | 1.873660 / 4.565676 (-2.692017) | 0.085860 / 0.424275 (-0.338415) | 0.012671 / 0.007607 (0.005063) | 0.512804 / 0.226044 (0.286759) | 5.103426 / 2.268929 (2.834497) | 2.336148 / 55.444624 (-53.108477) | 2.000140 / 6.876477 (-4.876336) | 2.095155 / 2.142072 (-0.046918) | 0.848612 / 4.805227 (-3.956615) | 0.171840 / 6.500664 (-6.328824) | 0.064144 / 0.075469 (-0.011325) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.222106 / 1.841788 (-0.619682) | 15.828559 / 8.074308 (7.754251) | 14.995298 / 10.191392 (4.803906) | 0.172783 / 0.680424 (-0.507641) | 0.029296 / 0.534201 (-0.504905) | 0.447469 / 0.579283 (-0.131814) | 0.658615 / 0.434364 (0.224251) | 1.527607 / 0.540337 (0.987270) | 1.830018 / 1.386936 (0.443082) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007922 / 0.011353 (-0.003431) | 0.005369 / 0.011008 (-0.005639) | 0.076580 / 0.038508 (0.038071) | 0.038770 / 0.023109 (0.015661) | 0.338995 / 0.275898 (0.063097) | 0.380865 / 0.323480 (0.057385) | 0.006489 / 0.007986 (-0.001497) | 0.004421 / 0.004328 (0.000093) | 0.074143 / 0.004250 (0.069893) | 0.054224 / 0.037052 (0.017171) | 0.348887 / 0.258489 (0.090397) | 0.395044 / 0.293841 (0.101203) | 0.037040 / 0.128546 (-0.091507) | 0.012547 / 0.075646 (-0.063099) | 0.087521 / 0.419271 (-0.331751) | 0.049918 / 0.043533 (0.006385) | 0.342428 / 0.255139 (0.087289) | 0.362216 / 0.283200 (0.079016) | 0.107204 / 0.141683 (-0.034479) | 1.509206 / 1.452155 (0.057052) | 1.596010 / 1.492716 (0.103293) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246795 / 0.018006 (0.228788) | 0.505998 / 0.000490 (0.505509) | 0.000446 / 0.000200 (0.000246) | 0.000064 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031591 / 0.037411 (-0.005821) | 0.117595 / 0.014526 (0.103069) | 0.132500 / 0.176557 (-0.044056) | 0.202244 / 0.737135 (-0.534891) | 0.136624 / 0.296338 (-0.159715) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428235 / 0.215209 (0.213026) | 4.262691 / 2.077655 (2.185036) | 2.057348 / 1.504120 (0.553228) | 1.928559 / 1.541195 (0.387364) | 2.120838 / 1.468490 (0.652347) | 0.706300 / 4.584777 (-3.878477) | 3.951828 / 3.745712 (0.206115) | 2.144218 / 5.269862 (-3.125644) | 1.359500 / 4.565676 (-3.206177) | 0.085404 / 0.424275 (-0.338872) | 0.012363 / 0.007607 (0.004756) | 0.529985 / 0.226044 (0.303941) | 5.295831 / 2.268929 (3.026903) | 2.522602 / 55.444624 (-52.922022) | 2.182850 / 6.876477 (-4.693627) | 2.270187 / 2.142072 (0.128114) | 0.841676 / 4.805227 (-3.963551) | 0.168366 / 6.500664 (-6.332298) | 0.065371 / 0.075469 (-0.010098) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.261464 / 1.841788 (-0.580324) | 17.010125 / 8.074308 (8.935817) | 14.304453 / 10.191392 (4.113061) | 0.177782 / 0.680424 (-0.502642) | 0.017762 / 0.534201 (-0.516439) | 0.427283 / 0.579283 (-0.152000) | 0.455176 / 0.434364 (0.020812) | 0.525962 / 0.540337 (-0.014375) | 0.625583 / 1.386936 (-0.761353) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b2aba6637dc61f145acda40e4e7b028c3947d72 \"CML watermark\")\n" ]
2023-02-03T16:17:00
2023-02-21T14:46:49
2023-02-21T14:39:23
Added functionality implementation: sort datasets by multiple keys/columns as discussed in https://github.com/huggingface/datasets/issues/5425.
MichlF
https://github.com/huggingface/datasets/pull/5502
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5502", "html_url": "https://github.com/huggingface/datasets/pull/5502", "diff_url": "https://github.com/huggingface/datasets/pull/5502.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5502.patch", "merged_at": "2023-02-21T14:39:23" }
true
1,569,644,159
5,501
Increase chunk size for speeding up file downloads
open
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5501). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008407 / 0.011353 (-0.002946) | 0.004651 / 0.011008 (-0.006357) | 0.100367 / 0.038508 (0.061859) | 0.029107 / 0.023109 (0.005998) | 0.302798 / 0.275898 (0.026900) | 0.354379 / 0.323480 (0.030899) | 0.006985 / 0.007986 (-0.001001) | 0.003365 / 0.004328 (-0.000963) | 0.078312 / 0.004250 (0.074062) | 0.034205 / 0.037052 (-0.002847) | 0.310431 / 0.258489 (0.051941) | 0.346239 / 0.293841 (0.052398) | 0.033800 / 0.128546 (-0.094747) | 0.011515 / 0.075646 (-0.064131) | 0.323588 / 0.419271 (-0.095684) | 0.040766 / 0.043533 (-0.002767) | 0.300914 / 0.255139 (0.045775) | 0.332983 / 0.283200 (0.049784) | 0.087500 / 0.141683 (-0.054182) | 1.469505 / 1.452155 (0.017350) | 1.505119 / 1.492716 (0.012403) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187319 / 0.018006 (0.169313) | 0.405498 / 0.000490 (0.405008) | 0.001000 / 0.000200 (0.000800) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022583 / 0.037411 (-0.014828) | 0.098096 / 0.014526 (0.083570) | 0.104272 / 0.176557 (-0.072284) | 0.142801 / 0.737135 (-0.594335) | 0.109749 / 0.296338 (-0.186590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423343 / 0.215209 (0.208134) | 4.215116 / 2.077655 (2.137461) | 1.899714 / 1.504120 (0.395594) | 1.689579 / 1.541195 (0.148384) | 1.710292 / 1.468490 (0.241801) | 0.690976 / 4.584777 (-3.893801) | 3.432501 / 3.745712 (-0.313212) | 1.899600 / 5.269862 (-3.370261) | 1.279801 / 4.565676 (-3.285876) | 0.082763 / 0.424275 (-0.341512) | 0.012545 / 0.007607 (0.004938) | 0.531381 / 0.226044 (0.305336) | 5.320077 / 2.268929 (3.051148) | 2.370705 / 55.444624 (-53.073919) | 2.007089 / 6.876477 (-4.869388) | 2.062412 / 2.142072 (-0.079661) | 0.814998 / 4.805227 (-3.990229) | 0.149822 / 6.500664 (-6.350842) | 0.064399 / 0.075469 (-0.011070) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226196 / 1.841788 (-0.615591) | 13.823443 / 8.074308 (5.749134) | 13.813667 / 10.191392 (3.622275) | 0.161289 / 0.680424 (-0.519135) | 0.028569 / 0.534201 (-0.505632) | 0.390360 / 0.579283 (-0.188923) | 0.396217 / 0.434364 (-0.038147) | 0.483120 / 0.540337 (-0.057217) | 0.570041 / 1.386936 (-0.816895) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006422 / 0.011353 (-0.004931) | 0.004528 / 0.011008 (-0.006481) | 0.076043 / 0.038508 (0.037535) | 0.027631 / 0.023109 (0.004522) | 0.340622 / 0.275898 (0.064724) | 0.376694 / 0.323480 (0.053214) | 0.004993 / 0.007986 (-0.002992) | 0.003403 / 0.004328 (-0.000926) | 0.074521 / 0.004250 (0.070270) | 0.037568 / 0.037052 (0.000516) | 0.343423 / 0.258489 (0.084934) | 0.387729 / 0.293841 (0.093888) | 0.031790 / 0.128546 (-0.096757) | 0.011767 / 0.075646 (-0.063879) | 0.085182 / 0.419271 (-0.334090) | 0.042867 / 0.043533 (-0.000666) | 0.341269 / 0.255139 (0.086130) | 0.368460 / 0.283200 (0.085261) | 0.090153 / 0.141683 (-0.051530) | 1.536490 / 1.452155 (0.084335) | 1.596403 / 1.492716 (0.103686) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222373 / 0.018006 (0.204367) | 0.396145 / 0.000490 (0.395655) | 0.000384 / 0.000200 (0.000184) | 0.000062 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024801 / 0.037411 (-0.012610) | 0.099711 / 0.014526 (0.085185) | 0.106094 / 0.176557 (-0.070463) | 0.147819 / 0.737135 (-0.589316) | 0.110065 / 0.296338 (-0.186274) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442863 / 0.215209 (0.227654) | 4.420043 / 2.077655 (2.342388) | 2.070136 / 1.504120 (0.566016) | 1.862363 / 1.541195 (0.321168) | 1.910890 / 1.468490 (0.442400) | 0.702570 / 4.584777 (-3.882207) | 3.435855 / 3.745712 (-0.309857) | 1.871290 / 5.269862 (-3.398572) | 1.169321 / 4.565676 (-3.396355) | 0.083674 / 0.424275 (-0.340601) | 0.012823 / 0.007607 (0.005216) | 0.539330 / 0.226044 (0.313285) | 5.403317 / 2.268929 (3.134389) | 2.536508 / 55.444624 (-52.908117) | 2.179629 / 6.876477 (-4.696847) | 2.207586 / 2.142072 (0.065514) | 0.812256 / 4.805227 (-3.992972) | 0.152915 / 6.500664 (-6.347749) | 0.068431 / 0.075469 (-0.007038) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294982 / 1.841788 (-0.546806) | 13.912811 / 8.074308 (5.838503) | 13.415658 / 10.191392 (3.224266) | 0.149531 / 0.680424 (-0.530893) | 0.016785 / 0.534201 (-0.517416) | 0.381055 / 0.579283 (-0.198228) | 0.392084 / 0.434364 (-0.042280) | 0.472614 / 0.540337 (-0.067724) | 0.559799 / 1.386936 (-0.827137) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6ef20f9b71acbb387caab2d297d8c22ba3db3633 \"CML watermark\")\n", "We simply do GET requests to hf.co to download files from the Hub right now. We may switch to hfh when we update how we do caching \r\n\r\nYou can try on any dataset hosted on the hub like `imagenet-1k`", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010931 / 0.011353 (-0.000422) | 0.005730 / 0.011008 (-0.005278) | 0.116653 / 0.038508 (0.078145) | 0.041439 / 0.023109 (0.018330) | 0.359559 / 0.275898 (0.083661) | 0.408398 / 0.323480 (0.084918) | 0.009193 / 0.007986 (0.001208) | 0.006024 / 0.004328 (0.001695) | 0.087743 / 0.004250 (0.083492) | 0.048636 / 0.037052 (0.011584) | 0.363133 / 0.258489 (0.104643) | 0.407144 / 0.293841 (0.113303) | 0.044610 / 0.128546 (-0.083936) | 0.014075 / 0.075646 (-0.061571) | 0.396506 / 0.419271 (-0.022766) | 0.057014 / 0.043533 (0.013482) | 0.358254 / 0.255139 (0.103115) | 0.399887 / 0.283200 (0.116687) | 0.115337 / 0.141683 (-0.026346) | 1.731655 / 1.452155 (0.279500) | 1.813276 / 1.492716 (0.320560) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210197 / 0.018006 (0.192191) | 0.475887 / 0.000490 (0.475397) | 0.003323 / 0.000200 (0.003123) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031686 / 0.037411 (-0.005725) | 0.131167 / 0.014526 (0.116641) | 0.137919 / 0.176557 (-0.038637) | 0.184843 / 0.737135 (-0.552293) | 0.144998 / 0.296338 (-0.151340) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471371 / 0.215209 (0.256162) | 4.693739 / 2.077655 (2.616084) | 2.251567 / 1.504120 (0.747447) | 1.993653 / 1.541195 (0.452458) | 2.053236 / 1.468490 (0.584746) | 0.809226 / 4.584777 (-3.775551) | 4.494120 / 3.745712 (0.748408) | 2.436921 / 5.269862 (-2.832940) | 1.541973 / 4.565676 (-3.023704) | 0.098401 / 0.424275 (-0.325874) | 0.014329 / 0.007607 (0.006722) | 0.597813 / 0.226044 (0.371769) | 5.964035 / 2.268929 (3.695107) | 2.709283 / 55.444624 (-52.735341) | 2.323537 / 6.876477 (-4.552940) | 2.401707 / 2.142072 (0.259635) | 0.976379 / 4.805227 (-3.828848) | 0.194638 / 6.500664 (-6.306026) | 0.076904 / 0.075469 (0.001435) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.516877 / 1.841788 (-0.324911) | 18.228010 / 8.074308 (10.153702) | 16.631750 / 10.191392 (6.440358) | 0.176030 / 0.680424 (-0.504394) | 0.033769 / 0.534201 (-0.500432) | 0.520511 / 0.579283 (-0.058773) | 0.531764 / 0.434364 (0.097400) | 0.648658 / 0.540337 (0.108321) | 0.779124 / 1.386936 (-0.607812) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008635 / 0.011353 (-0.002718) | 0.005785 / 0.011008 (-0.005223) | 0.087042 / 0.038508 (0.048534) | 0.039632 / 0.023109 (0.016523) | 0.419719 / 0.275898 (0.143821) | 0.463860 / 0.323480 (0.140380) | 0.006621 / 0.007986 (-0.001364) | 0.004655 / 0.004328 (0.000327) | 0.087003 / 0.004250 (0.082753) | 0.057122 / 0.037052 (0.020069) | 0.417820 / 0.258489 (0.159331) | 0.485981 / 0.293841 (0.192140) | 0.042606 / 0.128546 (-0.085940) | 0.014369 / 0.075646 (-0.061278) | 0.101939 / 0.419271 (-0.317333) | 0.058303 / 0.043533 (0.014770) | 0.415053 / 0.255139 (0.159914) | 0.439914 / 0.283200 (0.156714) | 0.134628 / 0.141683 (-0.007055) | 1.765464 / 1.452155 (0.313309) | 1.843963 / 1.492716 (0.351247) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.307156 / 0.018006 (0.289150) | 0.476657 / 0.000490 (0.476167) | 0.019718 / 0.000200 (0.019518) | 0.000160 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035286 / 0.037411 (-0.002125) | 0.138094 / 0.014526 (0.123568) | 0.144768 / 0.176557 (-0.031789) | 0.191386 / 0.737135 (-0.545750) | 0.151988 / 0.296338 (-0.144350) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.504733 / 0.215209 (0.289523) | 5.027048 / 2.077655 (2.949394) | 2.441571 / 1.504120 (0.937451) | 2.198242 / 1.541195 (0.657047) | 2.298473 / 1.468490 (0.829983) | 0.848048 / 4.584777 (-3.736729) | 4.613102 / 3.745712 (0.867390) | 2.522824 / 5.269862 (-2.747037) | 1.610159 / 4.565676 (-2.955517) | 0.105197 / 0.424275 (-0.319078) | 0.015195 / 0.007607 (0.007588) | 0.626976 / 0.226044 (0.400932) | 6.268459 / 2.268929 (3.999530) | 3.014387 / 55.444624 (-52.430237) | 2.554102 / 6.876477 (-4.322375) | 2.656051 / 2.142072 (0.513979) | 1.027978 / 4.805227 (-3.777249) | 0.200686 / 6.500664 (-6.299978) | 0.077104 / 0.075469 (0.001635) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.485228 / 1.841788 (-0.356560) | 18.319949 / 8.074308 (10.245641) | 15.855739 / 10.191392 (5.664347) | 0.204365 / 0.680424 (-0.476059) | 0.023824 / 0.534201 (-0.510377) | 0.505000 / 0.579283 (-0.074283) | 0.502866 / 0.434364 (0.068502) | 0.629574 / 0.540337 (0.089237) | 0.746602 / 1.386936 (-0.640334) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#900d429d3601657f766737b8670f855033078d57 \"CML watermark\")\n" ]
2023-02-03T10:50:10
2023-02-09T11:04:11
null
Original fix: https://github.com/huggingface/huggingface_hub/pull/1267 Not sure this function is actually still called though. I haven't done benches on this. Is there a dataset where files are hosted on the hub through cloudfront so we can have the same setup as in `hf_hub` ?
Narsil
https://github.com/huggingface/datasets/pull/5501
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5501", "html_url": "https://github.com/huggingface/datasets/pull/5501", "diff_url": "https://github.com/huggingface/datasets/pull/5501.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5501.patch", "merged_at": null }
true
1,569,257,240
5,500
WMT19 custom download checksum error
closed
[ "I update the `datatsets` version and it works." ]
2023-02-03T05:45:37
2023-02-03T05:52:56
2023-02-03T05:52:56
### Describe the bug I use the following scripts to download data from WMT19: ```python import datasets from datasets import inspect_dataset, load_dataset_builder from wmt19.wmt_utils import _TRAIN_SUBSETS,_DEV_SUBSETS ## this is a must due to: https://discuss.huggingface.co/t/load-dataset-hangs-with-local-files/28034/3 if __name__ == '__main__': dev_subsets,train_subsets = [],[] for subset in _TRAIN_SUBSETS: if subset.target=='en' and 'de' in subset.sources: train_subsets.append(subset.name) for subset in _DEV_SUBSETS: if subset.target=='en' and 'de' in subset.sources: dev_subsets.append(subset.name) inspect_dataset("wmt19", "./wmt19") builder = load_dataset_builder( "./wmt19/wmt_utils.py", language_pair=("de", "en"), subsets={ datasets.Split.TRAIN: train_subsets, datasets.Split.VALIDATION: dev_subsets, }, ) builder.download_and_prepare() ds = builder.as_dataset() ds.to_json("../data/wmt19/ende/data.json") ``` And I got the following error: ``` Traceback (most recent call last): | 0/2 [00:00<?, ?obj/s] File "draft.py", line 26, in <module> builder.download_and_prepare() | 0/1 [00:00<?, ?obj/s] File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/builder.py", line 605, in download_and_prepare self._download_and_prepare(%| | 0/1 [00:00<?, ?obj/s] File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/builder.py", line 1104, in _download_and_prepare super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos) | 0/1 [00:00<?, ?obj/s] File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/builder.py", line 676, in _download_and_prepare verify_checksums(s #13: 0%| | 0/1 [00:00<?, ?obj/s] File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 35, in verify_checksums raise UnexpectedDownloadedFile(str(set(recorded_checksums) - set(expected_checksums))) | 0/1 [00:00<?, ?obj/s] datasets.utils.info_utils.UnexpectedDownloadedFile: {'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-de.zipporah0-dedup-clean.tgz', 'https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-europarl-v7.zip', 'https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/rapid2016.zip', 'https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/training-parallel-nc-v13.zip', 'https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/training-parallel-nc-v12.zip', 'https://huggingface.co/datasets/wmt/wmt14/resolve/main-zip/training-parallel-nc-v9.zip', 'https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/training-parallel-nc-v10.zip', 'https://huggingface.co/datasets/wmt/wmt16/resolve/main-zip/translation-task/training-parallel-nc-v11.zip'} ``` ### Steps to reproduce the bug see above ### Expected behavior download data successfully ### Environment info datasets==2.1.0 python==3.8
Hannibal046
https://github.com/huggingface/datasets/issues/5500
null
false
1,568,937,026
5,499
`load_dataset` has ~4 seconds of overhead for cached data
open
[ "Hi ! To skip the verification step that checks if newer data exist, you can enable offline mode with `HF_DATASETS_OFFLINE=1`.\r\n\r\nAlthough I agree this step should be much faster for datasets hosted on the HF Hub - we could just compare the commit hash from the local data and the remote git repository. We're not been leveraging the git commit hashes, since the library was built before we even had git repositories for each dataset on HF.", "Thanks @lhoestq, for memory when I recorded those times I had `HF_DATASETS_OFFLINE` set." ]
2023-02-02T23:34:50
2023-02-07T19:35:11
null
### Feature request When loading a dataset that has been cached locally, the `load_dataset` function takes a lot longer than it should take to fetch the dataset from disk (or memory). This is particularly noticeable for smaller datasets. For example, wikitext-2, comparing `load_data` (once cached) and `load_from_disk`, the `load_dataset` method takes 40 times longer. โฑ 4.84s โฎœ load_dataset โฑ 119ms โฎœ load_from_disk ### Motivation I assume this is doing something like checking for a newer version. If so, that's an age old problem: do you make the user wait _every single time they load from cache_ or do you do something like load from cache always, _then_ check for a newer version and alert if they have stale data. The decision usually revolves around what percentage of the time the data will have been updated, and how dangerous old data is. For most datasets it's extremely unlikely that there will be a newer version on any given run, so 99% of the time this is just wasted time. Maybe you don't want to make that decision for all users, but at least having the _option_ to not wait for checks would be an improvement. ### Your contribution .
davidgilbertson
https://github.com/huggingface/datasets/issues/5499
null
false
1,568,190,529
5,498
TypeError: 'bool' object is not iterable when filtering a datasets.arrow_dataset.Dataset
closed
[ "Hi! Instead of a single boolean, your filter function should return an iterable (of booleans) in the batched mode like so:\r\n```python\r\ntrain_dataset = train_dataset.filter(\r\n function=lambda batch: [image is not None for image in batch[\"image\"]], \r\n batched=True,\r\n batch_size=10)\r\n```\r\n\r\nPS: You can make this operation much faster by operating directly on the arrow data to skip the decoding part:\r\n```python\r\ntrain_dataset = train_dataset.with_format(\"arrow\")\r\ntrain_dataset = train_dataset.filter(\r\n function=lambda table: table[\"image\"].is_valid().to_pylist(), \r\n batched=True,\r\n batch_size=100)\r\ntrain_dataset = train_dataset.with_format(None)\r\n```", "Thank a lot!", "I hit the same issue and the error message isn't really clear on what's going wrong. It might be helpful to update the docs with a batched example." ]
2023-02-02T14:46:49
2023-10-08T06:12:47
2023-02-04T17:19:36
### Describe the bug Hi, Thanks for the amazing work on the library! **Describe the bug** I think I might have noticed a small bug in the filter method. Having loaded a dataset using `load_dataset`, when I try to filter out empty entries with `batched=True`, I get a TypeError. ### Steps to reproduce the bug ``` train_dataset = train_dataset.filter( function=lambda example: example["image"] is not None, batched=True, batch_size=10) ``` Error message: ``` File .../lib/python3.9/site-packages/datasets/fingerprint.py:480, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs) 476 validate_fingerprint(kwargs[fingerprint_name]) 478 # Call actual function --> 480 out = func(self, *args, **kwargs) ... -> 5666 indices_array = [i for i, to_keep in zip(indices, mask) if to_keep] 5667 if indices_mapping is not None: 5668 indices_array = pa.array(indices_array, type=pa.uint64()) TypeError: 'bool' object is not iterable ``` **Removing batched=True allows to bypass the issue.** ### Expected behavior According to the doc, "[batch_size corresponds to the] number of examples per batch provided to function if batched = True", so we shouldn't need to remove the batchd=True arg? source: https://huggingface.co/docs/datasets/v2.9.0/en/package_reference/main_classes#datasets.Dataset.filter ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-5.4.0-122-generic-x86_64-with-glibc2.31 - Python version: 3.9.10 - PyArrow version: 10.0.1 - Pandas version: 1.5.3
vmuel
https://github.com/huggingface/datasets/issues/5498
null
false
1,567,601,264
5,497
Improved error message for gated/private repos
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009491 / 0.011353 (-0.001862) | 0.004690 / 0.011008 (-0.006319) | 0.111904 / 0.038508 (0.073396) | 0.030781 / 0.023109 (0.007671) | 0.309442 / 0.275898 (0.033544) | 0.389511 / 0.323480 (0.066031) | 0.007277 / 0.007986 (-0.000709) | 0.004364 / 0.004328 (0.000036) | 0.074501 / 0.004250 (0.070250) | 0.036799 / 0.037052 (-0.000254) | 0.320279 / 0.258489 (0.061790) | 0.353887 / 0.293841 (0.060046) | 0.047969 / 0.128546 (-0.080577) | 0.017281 / 0.075646 (-0.058366) | 0.339655 / 0.419271 (-0.079617) | 0.049317 / 0.043533 (0.005784) | 0.321221 / 0.255139 (0.066082) | 0.354743 / 0.283200 (0.071544) | 0.098634 / 0.141683 (-0.043049) | 1.408640 / 1.452155 (-0.043515) | 1.488361 / 1.492716 (-0.004356) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233677 / 0.018006 (0.215671) | 0.604424 / 0.000490 (0.603934) | 0.003834 / 0.000200 (0.003634) | 0.000103 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022682 / 0.037411 (-0.014729) | 0.103800 / 0.014526 (0.089274) | 0.113868 / 0.176557 (-0.062689) | 0.155111 / 0.737135 (-0.582025) | 0.111862 / 0.296338 (-0.184476) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474992 / 0.215209 (0.259783) | 4.755325 / 2.077655 (2.677670) | 1.889754 / 1.504120 (0.385634) | 1.597009 / 1.541195 (0.055814) | 1.639570 / 1.468490 (0.171080) | 0.970681 / 4.584777 (-3.614096) | 4.782567 / 3.745712 (1.036855) | 4.350465 / 5.269862 (-0.919397) | 2.413533 / 4.565676 (-2.152144) | 0.115510 / 0.424275 (-0.308765) | 0.011663 / 0.007607 (0.004055) | 0.626450 / 0.226044 (0.400406) | 6.238147 / 2.268929 (3.969218) | 2.603070 / 55.444624 (-52.841555) | 2.030378 / 6.876477 (-4.846099) | 1.996883 / 2.142072 (-0.145190) | 1.206436 / 4.805227 (-3.598792) | 0.203018 / 6.500664 (-6.297646) | 0.060550 / 0.075469 (-0.014919) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259850 / 1.841788 (-0.581937) | 14.079936 / 8.074308 (6.005628) | 16.036329 / 10.191392 (5.844937) | 0.221546 / 0.680424 (-0.458878) | 0.042416 / 0.534201 (-0.491785) | 0.438851 / 0.579283 (-0.140432) | 0.507053 / 0.434364 (0.072689) | 0.518672 / 0.540337 (-0.021665) | 0.585278 / 1.386936 (-0.801659) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010718 / 0.011353 (-0.000635) | 0.005469 / 0.011008 (-0.005539) | 0.075624 / 0.038508 (0.037116) | 0.029103 / 0.023109 (0.005994) | 0.353294 / 0.275898 (0.077395) | 0.353674 / 0.323480 (0.030194) | 0.005678 / 0.007986 (-0.002308) | 0.004610 / 0.004328 (0.000282) | 0.075213 / 0.004250 (0.070963) | 0.040032 / 0.037052 (0.002980) | 0.344363 / 0.258489 (0.085874) | 0.376861 / 0.293841 (0.083020) | 0.043718 / 0.128546 (-0.084828) | 0.016057 / 0.075646 (-0.059589) | 0.087746 / 0.419271 (-0.331526) | 0.051380 / 0.043533 (0.007848) | 0.336904 / 0.255139 (0.081765) | 0.357636 / 0.283200 (0.074436) | 0.089425 / 0.141683 (-0.052258) | 1.377462 / 1.452155 (-0.074692) | 1.448844 / 1.492716 (-0.043872) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259038 / 0.018006 (0.241031) | 0.512284 / 0.000490 (0.511794) | 0.005666 / 0.000200 (0.005466) | 0.000123 / 0.000054 (0.000068) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023669 / 0.037411 (-0.013742) | 0.097979 / 0.014526 (0.083453) | 0.117947 / 0.176557 (-0.058610) | 0.140764 / 0.737135 (-0.596372) | 0.114700 / 0.296338 (-0.181638) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.528844 / 0.215209 (0.313635) | 5.073828 / 2.077655 (2.996173) | 2.088738 / 1.504120 (0.584618) | 1.855820 / 1.541195 (0.314626) | 1.838639 / 1.468490 (0.370149) | 0.968228 / 4.584777 (-3.616549) | 4.589792 / 3.745712 (0.844079) | 2.586149 / 5.269862 (-2.683712) | 1.714241 / 4.565676 (-2.851435) | 0.124502 / 0.424275 (-0.299774) | 0.012115 / 0.007607 (0.004507) | 0.679539 / 0.226044 (0.453494) | 6.541335 / 2.268929 (4.272407) | 2.749153 / 55.444624 (-52.695471) | 2.124164 / 6.876477 (-4.752313) | 2.181249 / 2.142072 (0.039177) | 1.196846 / 4.805227 (-3.608381) | 0.213352 / 6.500664 (-6.287312) | 0.075021 / 0.075469 (-0.000448) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254301 / 1.841788 (-0.587487) | 14.494254 / 8.074308 (6.419946) | 16.619679 / 10.191392 (6.428287) | 0.205158 / 0.680424 (-0.475266) | 0.022181 / 0.534201 (-0.512019) | 0.422928 / 0.579283 (-0.156355) | 0.539825 / 0.434364 (0.105461) | 0.523165 / 0.540337 (-0.017173) | 0.615014 / 1.386936 (-0.771922) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e4d8a3d43569d61e73f7ab12ff3a6b48466afa8d \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011522 / 0.011353 (0.000169) | 0.006906 / 0.011008 (-0.004102) | 0.114692 / 0.038508 (0.076184) | 0.037686 / 0.023109 (0.014577) | 0.393662 / 0.275898 (0.117764) | 0.377730 / 0.323480 (0.054250) | 0.008212 / 0.007986 (0.000226) | 0.005470 / 0.004328 (0.001142) | 0.086962 / 0.004250 (0.082712) | 0.039085 / 0.037052 (0.002033) | 0.357565 / 0.258489 (0.099076) | 0.404384 / 0.293841 (0.110543) | 0.055523 / 0.128546 (-0.073023) | 0.018277 / 0.075646 (-0.057369) | 0.389812 / 0.419271 (-0.029459) | 0.058706 / 0.043533 (0.015173) | 0.344735 / 0.255139 (0.089597) | 0.395734 / 0.283200 (0.112535) | 0.096098 / 0.141683 (-0.045584) | 1.546654 / 1.452155 (0.094499) | 1.665314 / 1.492716 (0.172597) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255893 / 0.018006 (0.237887) | 0.589563 / 0.000490 (0.589074) | 0.005890 / 0.000200 (0.005690) | 0.000123 / 0.000054 (0.000069) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029167 / 0.037411 (-0.008245) | 0.113561 / 0.014526 (0.099036) | 0.125361 / 0.176557 (-0.051195) | 0.182225 / 0.737135 (-0.554910) | 0.125147 / 0.296338 (-0.171192) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.596859 / 0.215209 (0.381650) | 5.797725 / 2.077655 (3.720071) | 2.238420 / 1.504120 (0.734300) | 1.933177 / 1.541195 (0.391982) | 2.030750 / 1.468490 (0.562260) | 1.122655 / 4.584777 (-3.462122) | 5.247913 / 3.745712 (1.502201) | 2.792742 / 5.269862 (-2.477120) | 1.861487 / 4.565676 (-2.704190) | 0.133009 / 0.424275 (-0.291266) | 0.013219 / 0.007607 (0.005612) | 0.696905 / 0.226044 (0.470861) | 6.961298 / 2.268929 (4.692369) | 2.895352 / 55.444624 (-52.549273) | 2.353677 / 6.876477 (-4.522799) | 2.458804 / 2.142072 (0.316731) | 1.271905 / 4.805227 (-3.533322) | 0.224850 / 6.500664 (-6.275814) | 0.083773 / 0.075469 (0.008304) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.502425 / 1.841788 (-0.339363) | 16.959241 / 8.074308 (8.884933) | 19.865569 / 10.191392 (9.674177) | 0.228608 / 0.680424 (-0.451816) | 0.044035 / 0.534201 (-0.490166) | 0.545172 / 0.579283 (-0.034112) | 0.677193 / 0.434364 (0.242829) | 0.608988 / 0.540337 (0.068650) | 0.719210 / 1.386936 (-0.667726) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008297 / 0.011353 (-0.003056) | 0.005729 / 0.011008 (-0.005280) | 0.084762 / 0.038508 (0.046254) | 0.030622 / 0.023109 (0.007512) | 0.408017 / 0.275898 (0.132119) | 0.432114 / 0.323480 (0.108634) | 0.006965 / 0.007986 (-0.001021) | 0.004830 / 0.004328 (0.000502) | 0.087375 / 0.004250 (0.083124) | 0.048110 / 0.037052 (0.011058) | 0.414978 / 0.258489 (0.156489) | 0.446136 / 0.293841 (0.152295) | 0.064351 / 0.128546 (-0.064195) | 0.018273 / 0.075646 (-0.057374) | 0.114853 / 0.419271 (-0.304418) | 0.056962 / 0.043533 (0.013429) | 0.427791 / 0.255139 (0.172652) | 0.428829 / 0.283200 (0.145629) | 0.108004 / 0.141683 (-0.033679) | 1.639285 / 1.452155 (0.187130) | 1.652106 / 1.492716 (0.159390) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.359744 / 0.018006 (0.341738) | 0.596060 / 0.000490 (0.595570) | 0.025448 / 0.000200 (0.025248) | 0.000158 / 0.000054 (0.000104) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026348 / 0.037411 (-0.011064) | 0.119153 / 0.014526 (0.104628) | 0.129304 / 0.176557 (-0.047253) | 0.195670 / 0.737135 (-0.541465) | 0.135559 / 0.296338 (-0.160780) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.588963 / 0.215209 (0.373754) | 5.682957 / 2.077655 (3.605302) | 2.380178 / 1.504120 (0.876059) | 2.131299 / 1.541195 (0.590104) | 2.167839 / 1.468490 (0.699349) | 1.126418 / 4.584777 (-3.458359) | 5.289104 / 3.745712 (1.543392) | 2.952128 / 5.269862 (-2.317734) | 1.922974 / 4.565676 (-2.642702) | 0.143874 / 0.424275 (-0.280401) | 0.015399 / 0.007607 (0.007792) | 0.815675 / 0.226044 (0.589631) | 7.320146 / 2.268929 (5.051217) | 3.453670 / 55.444624 (-51.990954) | 2.579133 / 6.876477 (-4.297344) | 2.532331 / 2.142072 (0.390258) | 1.345881 / 4.805227 (-3.459347) | 0.242448 / 6.500664 (-6.258216) | 0.070007 / 0.075469 (-0.005462) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.433173 / 1.841788 (-0.408614) | 17.127287 / 8.074308 (9.052979) | 17.953878 / 10.191392 (7.762486) | 0.220035 / 0.680424 (-0.460389) | 0.028660 / 0.534201 (-0.505541) | 0.496233 / 0.579283 (-0.083050) | 0.591587 / 0.434364 (0.157223) | 0.635204 / 0.540337 (0.094867) | 0.702143 / 1.386936 (-0.684793) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7cfac43b980ab9e4a69c2328f085770996323005 \"CML watermark\")\n" ]
2023-02-02T08:56:15
2023-02-02T11:26:08
2023-02-02T11:17:15
Using `use_auth_token=True` is not needed anymore. If a user logged in, the token will be automatically retrieved. Also include a mention for gated repos See https://github.com/huggingface/huggingface_hub/pull/1064
osanseviero
https://github.com/huggingface/datasets/pull/5497
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5497", "html_url": "https://github.com/huggingface/datasets/pull/5497", "diff_url": "https://github.com/huggingface/datasets/pull/5497.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5497.patch", "merged_at": "2023-02-02T11:17:14" }
true
1,567,301,765
5,496
Add a `reduce` method
closed
[ "Hi! Sure, feel free to open a PR, so we can see the API you have in mind.", "I would like to give it a go! #self-assign", "Closing as `Dataset.map` can be used instead (see https://github.com/huggingface/datasets/pull/5533#issuecomment-1440571658 and https://github.com/huggingface/datasets/pull/5533#issuecomment-1446403263)", "Hello, is it possible for this issue/PR to be revisited? The problem with the alternatives presented (besides multiple map stages) is that they don't use the cache. A reduce operation is just as expensive as a map operation because it also goes over the entire dataset. It's equally worth caching.\r\n\r\nPersonally, I have a situation where I would need this and map is far from ideal. I'm working on updating a project of mine to use Huggingface Datasets, and I need to port the loop at https://github.com/colonelwatch/abstracts-search/blob/b90f31ee4cc6e394f829d3a6d9d0311ca390ada9/train.py#L112-L138. Please forgive the code style, here's what it does in English. I have a dataset of about 95 million embeddings, out of which 16384 is taken as a \"query\" set. For each embedding in the query set, I need to find the ten closest neighbors. These nearest neighbors are used to tune the parameters of a faiss index. The solution is to set up an \"accumulator\" comprising of the ten closest so far and their distances, then do a single scan over the 95 million (memmapped), then save the results of the \"accumulator\" for when I want to prototype another index.\r\n\r\nThe closest approximation to this is multiple map stages, but with such a large \"accumulator\" having the RAM to do a big batch size becomes critical. At a batch size of 1000, the intermediate accumulators would in theory be about 120 GB! That can be more if I want higher precision than float32. It would already be about the same size as the original embeddings. Using larger batch sizes puts strain on the RAM because I'd be dealing with batch_size x 16384 distances. The best I'd gotten with my RAM, single-threaded, was 65536, and for speed I had to use that thread to feed a GPU. It'd be better if I could use multiple threads to get high throughput instead, or even do all the work in CPU, but to fit the threads I'd need the batch size to be smaller.\r\n\r\nAll of this intermediate memory could be eliminated if there was a reduce operation." ]
2023-02-02T04:30:22
2024-11-12T05:58:14
2023-07-21T14:24:32
### Feature request Right now the `Dataset` class implements `map()` and `filter()`, but leaves out the third functional idiom popular among Python users: `reduce`. ### Motivation A `reduce` method is often useful when calculating dataset statistics, for example, the occurrence of a particular n-gram or the average line length of a code dataset. ### Your contribution I haven't contributed to `datasets` before, but I don't expect this will be too difficult, since the implementation will closely follow that of `map` and `filter`. I could have a crack over the weekend.
zhangir-azerbayev
https://github.com/huggingface/datasets/issues/5496
null
false
1,566,803,452
5,495
to_tf_dataset fails with datetime UTC columns even if not included in columns argument
closed
[ "Hi! This is indeed a bug in our zero-copy logic.\r\n\r\nTo fix it, instead of the line:\r\nhttps://github.com/huggingface/datasets/blob/7cfac43b980ab9e4a69c2328f085770996323005/src/datasets/features/features.py#L702\r\n\r\nwe should have:\r\n```python\r\nreturn pa.types.is_primitive(pa_type) and not (pa.types.is_boolean(pa_type) or pa.types.is_temporal(pa_type))\r\n```", "@mariosasko submitted a small PR [here](https://github.com/huggingface/datasets/pull/5504)" ]
2023-02-01T20:47:33
2023-02-08T14:33:19
2023-02-08T14:33:19
### Describe the bug There appears to be some eager behavior in `to_tf_dataset` that runs against every column in a dataset even if they aren't included in the columns argument. This is problematic with datetime UTC columns due to them not working with zero copy. If I don't have UTC information in my datetime column, then everything works as expected. ### Steps to reproduce the bug ```python import numpy as np import pandas as pd from datasets import Dataset df = pd.DataFrame(np.random.rand(2, 1), columns=["x"]) # df["dt"] = pd.to_datetime(["2023-01-01", "2023-01-01"]) # works fine df["dt"] = pd.to_datetime(["2023-01-01 00:00:00.00000+00:00", "2023-01-01 00:00:00.00000+00:00"]) df.to_parquet("test.pq") ds = Dataset.from_parquet("test.pq") tf_ds = ds.to_tf_dataset(columns=["x"], batch_size=2, shuffle=True) ``` ``` ArrowInvalid Traceback (most recent call last) Cell In[1], line 12 8 df.to_parquet("test.pq") 11 ds = Dataset.from_parquet("test.pq") ---> 12 tf_ds = ds.to_tf_dataset(columns=["r"], batch_size=2, shuffle=True) File ~/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:411, in TensorflowDatasetMixin.to_tf_dataset(self, batch_size, columns, shuffle, collate_fn, drop_remainder, collate_fn_args, label_cols, prefetch, num_workers) 407 dataset = self 409 # TODO(Matt, QL): deprecate the retention of label_ids and label --> 411 output_signature, columns_to_np_types = dataset._get_output_signature( 412 dataset, 413 collate_fn=collate_fn, 414 collate_fn_args=collate_fn_args, 415 cols_to_retain=cols_to_retain, 416 batch_size=batch_size if drop_remainder else None, 417 ) 419 if "labels" in output_signature: 420 if ("label_ids" in columns or "label" in columns) and "labels" not in columns: File ~/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:254, in TensorflowDatasetMixin._get_output_signature(dataset, collate_fn, collate_fn_args, cols_to_retain, batch_size, num_test_batches) 252 for _ in range(num_test_batches): 253 indices = sample(range(len(dataset)), test_batch_size) --> 254 test_batch = dataset[indices] 255 if cols_to_retain is not None: 256 test_batch = {key: value for key, value in test_batch.items() if key in cols_to_retain} File ~/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:2590, in Dataset.__getitem__(self, key) 2588 def __getitem__(self, key): # noqa: F811 2589 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).""" -> 2590 return self._getitem( 2591 key, 2592 ) File ~/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:2575, in Dataset._getitem(self, key, **kwargs) 2573 formatter = get_formatter(format_type, features=self.features, **format_kwargs) 2574 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) -> 2575 formatted_output = format_table( 2576 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns 2577 ) 2578 return formatted_output File ~/venv/lib/python3.8/site-packages/datasets/formatting/formatting.py:634, in format_table(table, key, formatter, format_columns, output_all_columns) 632 python_formatter = PythonFormatter(features=None) 633 if format_columns is None: --> 634 return formatter(pa_table, query_type=query_type) 635 elif query_type == "column": 636 if key in format_columns: File ~/venv/lib/python3.8/site-packages/datasets/formatting/formatting.py:410, in Formatter.__call__(self, pa_table, query_type) 408 return self.format_column(pa_table) 409 elif query_type == "batch": --> 410 return self.format_batch(pa_table) File ~/venv/lib/python3.8/site-packages/datasets/formatting/np_formatter.py:78, in NumpyFormatter.format_batch(self, pa_table) 77 def format_batch(self, pa_table: pa.Table) -> Mapping: ---> 78 batch = self.numpy_arrow_extractor().extract_batch(pa_table) 79 batch = self.python_features_decoder.decode_batch(batch) 80 batch = self.recursive_tensorize(batch) File ~/venv/lib/python3.8/site-packages/datasets/formatting/formatting.py:164, in NumpyArrowExtractor.extract_batch(self, pa_table) 163 def extract_batch(self, pa_table: pa.Table) -> dict: --> 164 return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names} File ~/venv/lib/python3.8/site-packages/datasets/formatting/formatting.py:164, in <dictcomp>(.0) 163 def extract_batch(self, pa_table: pa.Table) -> dict: --> 164 return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names} File ~/venv/lib/python3.8/site-packages/datasets/formatting/formatting.py:185, in NumpyArrowExtractor._arrow_array_to_numpy(self, pa_array) 181 else: 182 zero_copy_only = _is_zero_copy_only(pa_array.type) and all( 183 not _is_array_with_nulls(chunk) for chunk in pa_array.chunks 184 ) --> 185 array: List = [ 186 row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only) 187 ] 188 else: 189 if isinstance(pa_array.type, _ArrayXDExtensionType): 190 # don't call to_pylist() to preserve dtype of the fixed-size array File ~/venv/lib/python3.8/site-packages/datasets/formatting/formatting.py:186, in <listcomp>(.0) 181 else: 182 zero_copy_only = _is_zero_copy_only(pa_array.type) and all( 183 not _is_array_with_nulls(chunk) for chunk in pa_array.chunks 184 ) 185 array: List = [ --> 186 row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only) 187 ] 188 else: 189 if isinstance(pa_array.type, _ArrayXDExtensionType): 190 # don't call to_pylist() to preserve dtype of the fixed-size array File ~/venv/lib/python3.8/site-packages/pyarrow/array.pxi:1475, in pyarrow.lib.Array.to_numpy() File ~/venv/lib/python3.8/site-packages/pyarrow/error.pxi:100, in pyarrow.lib.check_status() ArrowInvalid: Needed to copy 1 chunks with 0 nulls, but zero_copy_only was True ``` ### Expected behavior I think there are two potential issues/fixes 1. Proper handling of datetime UTC columns (perhaps there is something incorrect with zero copy handling here) 2. Not eagerly running against every column in a dataset when the columns argument of `to_tf_dataset` specifies a subset of columns (although I'm not sure if this is unavoidable) ### Environment info - `datasets` version: 2.9.0 - Platform: macOS-13.2-x86_64-i386-64bit - Python version: 3.8.12 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
dwyatte
https://github.com/huggingface/datasets/issues/5495
null
false
1,566,655,348
5,494
Update audio installation doc page
closed
[ "Totally agree, the docs should be in sync with our code.\r\n\r\nIndeed to avoid confusing users, I think we should have updated the docs at the same time as this PR:\r\n- #5167", "@albertvillanova yeah sure I should have, but I forgot back then, sorry for that ๐Ÿ˜ถ", "No, @polinaeterna, nothing to be sorry about.\r\n\r\nMy comment was for all of us datasets team, as a reminder: when making a PR, but also when reviewing some other's PR, we should not forget to update the corresponding docstring and doc pages. It is something we can improve if we help each other in reminding about it... :hugs: ", "@polinaeterna I think we can close this issue now as we no longer use `torchaudio` for decoding." ]
2023-02-01T19:07:50
2023-03-02T16:08:17
2023-03-02T16:08:17
Our [installation documentation page](https://huggingface.co/docs/datasets/installation#audio) says that one can use Datasets for mp3 only with `torchaudio<0.12`. `torchaudio>0.12` is actually supported too but requires a specific version of ffmpeg which is not easily installed on all linux versions but there is a custom ubuntu repo for it, we have insctructions in the code: https://github.com/huggingface/datasets/blob/main/src/datasets/features/audio.py#L327 So we should update the doc page. But first investigate [this issue](5488).
polinaeterna
https://github.com/huggingface/datasets/issues/5494
null
false
1,566,637,806
5,493
Remove unused `load_from_cache_file` arg from `Dataset.shard()` docstring
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5493). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008956 / 0.011353 (-0.002397) | 0.004590 / 0.011008 (-0.006418) | 0.101305 / 0.038508 (0.062797) | 0.030347 / 0.023109 (0.007237) | 0.302492 / 0.275898 (0.026594) | 0.335986 / 0.323480 (0.012506) | 0.007272 / 0.007986 (-0.000714) | 0.004303 / 0.004328 (-0.000025) | 0.078592 / 0.004250 (0.074341) | 0.035545 / 0.037052 (-0.001507) | 0.316052 / 0.258489 (0.057563) | 0.342523 / 0.293841 (0.048682) | 0.034128 / 0.128546 (-0.094419) | 0.011475 / 0.075646 (-0.064171) | 0.325272 / 0.419271 (-0.093999) | 0.041815 / 0.043533 (-0.001717) | 0.303093 / 0.255139 (0.047955) | 0.331987 / 0.283200 (0.048788) | 0.087264 / 0.141683 (-0.054419) | 1.476284 / 1.452155 (0.024129) | 1.562034 / 1.492716 (0.069318) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206502 / 0.018006 (0.188496) | 0.409893 / 0.000490 (0.409404) | 0.002479 / 0.000200 (0.002279) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022891 / 0.037411 (-0.014520) | 0.100209 / 0.014526 (0.085683) | 0.105576 / 0.176557 (-0.070981) | 0.141035 / 0.737135 (-0.596100) | 0.109733 / 0.296338 (-0.186606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413791 / 0.215209 (0.198582) | 4.125890 / 2.077655 (2.048235) | 1.833023 / 1.504120 (0.328903) | 1.631325 / 1.541195 (0.090130) | 1.708406 / 1.468490 (0.239916) | 0.690100 / 4.584777 (-3.894677) | 3.379058 / 3.745712 (-0.366654) | 2.019044 / 5.269862 (-3.250818) | 1.323332 / 4.565676 (-3.242344) | 0.082709 / 0.424275 (-0.341566) | 0.012434 / 0.007607 (0.004827) | 0.527139 / 0.226044 (0.301095) | 5.271529 / 2.268929 (3.002601) | 2.297311 / 55.444624 (-53.147314) | 1.949021 / 6.876477 (-4.927456) | 2.001098 / 2.142072 (-0.140975) | 0.811591 / 4.805227 (-3.993636) | 0.149028 / 6.500664 (-6.351637) | 0.066233 / 0.075469 (-0.009236) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254276 / 1.841788 (-0.587512) | 13.638485 / 8.074308 (5.564177) | 13.943274 / 10.191392 (3.751882) | 0.147426 / 0.680424 (-0.532997) | 0.028602 / 0.534201 (-0.505599) | 0.398080 / 0.579283 (-0.181203) | 0.402178 / 0.434364 (-0.032186) | 0.477045 / 0.540337 (-0.063292) | 0.567731 / 1.386936 (-0.819205) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006936 / 0.011353 (-0.004417) | 0.004614 / 0.011008 (-0.006394) | 0.079779 / 0.038508 (0.041271) | 0.027941 / 0.023109 (0.004832) | 0.347224 / 0.275898 (0.071326) | 0.378183 / 0.323480 (0.054703) | 0.005249 / 0.007986 (-0.002737) | 0.004907 / 0.004328 (0.000579) | 0.078678 / 0.004250 (0.074428) | 0.041912 / 0.037052 (0.004860) | 0.347838 / 0.258489 (0.089349) | 0.386760 / 0.293841 (0.092919) | 0.032680 / 0.128546 (-0.095867) | 0.014321 / 0.075646 (-0.061325) | 0.087924 / 0.419271 (-0.331347) | 0.045060 / 0.043533 (0.001527) | 0.340986 / 0.255139 (0.085847) | 0.368689 / 0.283200 (0.085489) | 0.093274 / 0.141683 (-0.048409) | 1.474435 / 1.452155 (0.022281) | 1.569753 / 1.492716 (0.077037) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206789 / 0.018006 (0.188783) | 0.416518 / 0.000490 (0.416028) | 0.000404 / 0.000200 (0.000204) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026207 / 0.037411 (-0.011205) | 0.101914 / 0.014526 (0.087388) | 0.108585 / 0.176557 (-0.067972) | 0.150438 / 0.737135 (-0.586697) | 0.110744 / 0.296338 (-0.185594) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443571 / 0.215209 (0.228362) | 4.433139 / 2.077655 (2.355485) | 2.109525 / 1.504120 (0.605405) | 1.901484 / 1.541195 (0.360290) | 1.968812 / 1.468490 (0.500322) | 0.704334 / 4.584777 (-3.880443) | 3.392028 / 3.745712 (-0.353684) | 3.072693 / 5.269862 (-2.197168) | 1.552227 / 4.565676 (-3.013449) | 0.083741 / 0.424275 (-0.340534) | 0.012627 / 0.007607 (0.005020) | 0.544706 / 0.226044 (0.318662) | 5.462743 / 2.268929 (3.193815) | 2.551265 / 55.444624 (-52.893360) | 2.208075 / 6.876477 (-4.668401) | 2.259092 / 2.142072 (0.117020) | 0.810687 / 4.805227 (-3.994540) | 0.152347 / 6.500664 (-6.348317) | 0.068346 / 0.075469 (-0.007123) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269716 / 1.841788 (-0.572072) | 14.215698 / 8.074308 (6.141390) | 13.691773 / 10.191392 (3.500381) | 0.152620 / 0.680424 (-0.527804) | 0.017219 / 0.534201 (-0.516982) | 0.382533 / 0.579283 (-0.196750) | 0.388994 / 0.434364 (-0.045370) | 0.479400 / 0.540337 (-0.060938) | 0.572699 / 1.386936 (-0.814237) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2d90f14cd6e756abeb27045940a6756104cc2d6 \"CML watermark\")\n" ]
2023-02-01T18:57:48
2023-02-08T15:10:46
2023-02-08T15:03:50
null
polinaeterna
https://github.com/huggingface/datasets/pull/5493
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5493", "html_url": "https://github.com/huggingface/datasets/pull/5493", "diff_url": "https://github.com/huggingface/datasets/pull/5493.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5493.patch", "merged_at": "2023-02-08T15:03:50" }
true
1,566,604,216
5,492
Push_to_hub in a pull request
closed
[ "Assigned to myself and will get to it in the next week, but if someone finds this issue annoying and wants to submit a PR before I do, just ping me here and I'll reassign :). ", "I would like to be assigned to this issue, @nateraw . #self-assign" ]
2023-02-01T18:32:14
2023-10-16T13:30:48
2023-10-16T13:30:48
Right now `ds.push_to_hub()` can push a dataset on `main` or on a new branch with `branch=`, but there is no way to open a pull request. Even passing `branch=refs/pr/x` doesn't seem to work: it tries to create a branch with that name cc @nateraw It should be possible to tweak the use of `huggingface_hub` in `push_to_hub` to make it open a PR or push to an existing PR
lhoestq
https://github.com/huggingface/datasets/issues/5492
null
false
1,566,235,012
5,491
[MINOR] Typo
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008726 / 0.011353 (-0.002627) | 0.004589 / 0.011008 (-0.006419) | 0.101078 / 0.038508 (0.062570) | 0.029732 / 0.023109 (0.006622) | 0.298309 / 0.275898 (0.022411) | 0.367800 / 0.323480 (0.044320) | 0.007025 / 0.007986 (-0.000961) | 0.003513 / 0.004328 (-0.000815) | 0.079531 / 0.004250 (0.075281) | 0.035588 / 0.037052 (-0.001465) | 0.307850 / 0.258489 (0.049361) | 0.351603 / 0.293841 (0.057762) | 0.033593 / 0.128546 (-0.094954) | 0.011669 / 0.075646 (-0.063977) | 0.323025 / 0.419271 (-0.096246) | 0.042047 / 0.043533 (-0.001486) | 0.300565 / 0.255139 (0.045426) | 0.329362 / 0.283200 (0.046163) | 0.089001 / 0.141683 (-0.052682) | 1.472799 / 1.452155 (0.020644) | 1.488902 / 1.492716 (-0.003814) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012491 / 0.018006 (-0.005515) | 0.408245 / 0.000490 (0.407755) | 0.003878 / 0.000200 (0.003678) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023698 / 0.037411 (-0.013713) | 0.100442 / 0.014526 (0.085916) | 0.108233 / 0.176557 (-0.068323) | 0.145308 / 0.737135 (-0.591827) | 0.113121 / 0.296338 (-0.183218) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420490 / 0.215209 (0.205281) | 4.179838 / 2.077655 (2.102183) | 2.156007 / 1.504120 (0.651887) | 1.911358 / 1.541195 (0.370163) | 1.867961 / 1.468490 (0.399471) | 0.685254 / 4.584777 (-3.899523) | 3.382386 / 3.745712 (-0.363326) | 3.285657 / 5.269862 (-1.984205) | 1.693878 / 4.565676 (-2.871798) | 0.081680 / 0.424275 (-0.342595) | 0.012182 / 0.007607 (0.004575) | 0.526021 / 0.226044 (0.299977) | 5.276217 / 2.268929 (3.007289) | 2.541518 / 55.444624 (-52.903106) | 2.313452 / 6.876477 (-4.563025) | 2.340000 / 2.142072 (0.197928) | 0.807099 / 4.805227 (-3.998128) | 0.147587 / 6.500664 (-6.353077) | 0.064280 / 0.075469 (-0.011189) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.223466 / 1.841788 (-0.618321) | 13.911365 / 8.074308 (5.837057) | 14.261550 / 10.191392 (4.070158) | 0.135922 / 0.680424 (-0.544502) | 0.028832 / 0.534201 (-0.505368) | 0.393142 / 0.579283 (-0.186141) | 0.400507 / 0.434364 (-0.033857) | 0.471792 / 0.540337 (-0.068546) | 0.558278 / 1.386936 (-0.828658) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006644 / 0.011353 (-0.004709) | 0.004531 / 0.011008 (-0.006478) | 0.076285 / 0.038508 (0.037777) | 0.027249 / 0.023109 (0.004140) | 0.343137 / 0.275898 (0.067239) | 0.378498 / 0.323480 (0.055018) | 0.004950 / 0.007986 (-0.003036) | 0.003422 / 0.004328 (-0.000907) | 0.075662 / 0.004250 (0.071412) | 0.039692 / 0.037052 (0.002640) | 0.343402 / 0.258489 (0.084913) | 0.385067 / 0.293841 (0.091226) | 0.032382 / 0.128546 (-0.096164) | 0.011577 / 0.075646 (-0.064069) | 0.085534 / 0.419271 (-0.333738) | 0.052139 / 0.043533 (0.008606) | 0.342176 / 0.255139 (0.087037) | 0.367298 / 0.283200 (0.084098) | 0.096088 / 0.141683 (-0.045595) | 1.470770 / 1.452155 (0.018615) | 1.567316 / 1.492716 (0.074600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217664 / 0.018006 (0.199657) | 0.397807 / 0.000490 (0.397317) | 0.006864 / 0.000200 (0.006664) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025064 / 0.037411 (-0.012348) | 0.100906 / 0.014526 (0.086380) | 0.107444 / 0.176557 (-0.069113) | 0.143679 / 0.737135 (-0.593457) | 0.112460 / 0.296338 (-0.183879) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442634 / 0.215209 (0.227425) | 4.410687 / 2.077655 (2.333032) | 2.067445 / 1.504120 (0.563325) | 1.860569 / 1.541195 (0.319374) | 1.943523 / 1.468490 (0.475033) | 0.694585 / 4.584777 (-3.890192) | 3.375906 / 3.745712 (-0.369806) | 3.483334 / 5.269862 (-1.786528) | 1.437700 / 4.565676 (-3.127977) | 0.083138 / 0.424275 (-0.341137) | 0.012979 / 0.007607 (0.005372) | 0.536414 / 0.226044 (0.310370) | 5.379872 / 2.268929 (3.110943) | 2.517907 / 55.444624 (-52.926717) | 2.164772 / 6.876477 (-4.711705) | 2.212839 / 2.142072 (0.070767) | 0.799675 / 4.805227 (-4.005553) | 0.150253 / 6.500664 (-6.350411) | 0.067033 / 0.075469 (-0.008436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.295592 / 1.841788 (-0.546196) | 14.372932 / 8.074308 (6.298623) | 13.618423 / 10.191392 (3.427031) | 0.141212 / 0.680424 (-0.539212) | 0.016933 / 0.534201 (-0.517268) | 0.385664 / 0.579283 (-0.193619) | 0.386919 / 0.434364 (-0.047445) | 0.477022 / 0.540337 (-0.063315) | 0.565158 / 1.386936 (-0.821778) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#38c715cc787a81d0fd894205b4b24aca2f45f84b \"CML watermark\")\n" ]
2023-02-01T14:39:39
2023-02-02T07:42:28
2023-02-02T07:35:14
null
cakiki
https://github.com/huggingface/datasets/pull/5491
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5491", "html_url": "https://github.com/huggingface/datasets/pull/5491", "diff_url": "https://github.com/huggingface/datasets/pull/5491.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5491.patch", "merged_at": "2023-02-02T07:35:14" }
true
1,565,842,327
5,490
Do not add index column by default when exporting to CSV
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008581 / 0.011353 (-0.002772) | 0.004519 / 0.011008 (-0.006490) | 0.099721 / 0.038508 (0.061213) | 0.029217 / 0.023109 (0.006107) | 0.298229 / 0.275898 (0.022331) | 0.332605 / 0.323480 (0.009125) | 0.006880 / 0.007986 (-0.001106) | 0.003324 / 0.004328 (-0.001005) | 0.078143 / 0.004250 (0.073892) | 0.034262 / 0.037052 (-0.002790) | 0.304162 / 0.258489 (0.045673) | 0.342351 / 0.293841 (0.048510) | 0.033387 / 0.128546 (-0.095159) | 0.011397 / 0.075646 (-0.064249) | 0.321527 / 0.419271 (-0.097744) | 0.040886 / 0.043533 (-0.002647) | 0.299968 / 0.255139 (0.044829) | 0.322484 / 0.283200 (0.039285) | 0.083832 / 0.141683 (-0.057851) | 1.482241 / 1.452155 (0.030086) | 1.548438 / 1.492716 (0.055721) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191002 / 0.018006 (0.172996) | 0.403423 / 0.000490 (0.402933) | 0.002493 / 0.000200 (0.002293) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023720 / 0.037411 (-0.013691) | 0.100806 / 0.014526 (0.086281) | 0.105314 / 0.176557 (-0.071242) | 0.141490 / 0.737135 (-0.595645) | 0.108695 / 0.296338 (-0.187644) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412250 / 0.215209 (0.197041) | 4.124830 / 2.077655 (2.047175) | 1.851948 / 1.504120 (0.347828) | 1.651597 / 1.541195 (0.110403) | 1.712486 / 1.468490 (0.243996) | 0.696634 / 4.584777 (-3.888143) | 3.304220 / 3.745712 (-0.441492) | 1.862776 / 5.269862 (-3.407086) | 1.159452 / 4.565676 (-3.406224) | 0.082930 / 0.424275 (-0.341345) | 0.012586 / 0.007607 (0.004979) | 0.524499 / 0.226044 (0.298455) | 5.249235 / 2.268929 (2.980307) | 2.293187 / 55.444624 (-53.151437) | 1.950101 / 6.876477 (-4.926376) | 2.008274 / 2.142072 (-0.133799) | 0.811641 / 4.805227 (-3.993586) | 0.148785 / 6.500664 (-6.351879) | 0.064461 / 0.075469 (-0.011008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.232227 / 1.841788 (-0.609561) | 13.235896 / 8.074308 (5.161588) | 13.837420 / 10.191392 (3.646028) | 0.135586 / 0.680424 (-0.544838) | 0.028935 / 0.534201 (-0.505266) | 0.397064 / 0.579283 (-0.182220) | 0.393814 / 0.434364 (-0.040549) | 0.480450 / 0.540337 (-0.059887) | 0.561159 / 1.386936 (-0.825777) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006696 / 0.011353 (-0.004657) | 0.004528 / 0.011008 (-0.006480) | 0.077335 / 0.038508 (0.038827) | 0.027181 / 0.023109 (0.004072) | 0.345379 / 0.275898 (0.069481) | 0.372544 / 0.323480 (0.049064) | 0.006808 / 0.007986 (-0.001178) | 0.003284 / 0.004328 (-0.001045) | 0.077379 / 0.004250 (0.073129) | 0.039954 / 0.037052 (0.002901) | 0.348094 / 0.258489 (0.089605) | 0.382315 / 0.293841 (0.088474) | 0.031694 / 0.128546 (-0.096852) | 0.011714 / 0.075646 (-0.063933) | 0.086425 / 0.419271 (-0.332846) | 0.041778 / 0.043533 (-0.001754) | 0.342161 / 0.255139 (0.087022) | 0.363798 / 0.283200 (0.080599) | 0.091315 / 0.141683 (-0.050368) | 1.462066 / 1.452155 (0.009912) | 1.541417 / 1.492716 (0.048700) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235840 / 0.018006 (0.217834) | 0.397096 / 0.000490 (0.396606) | 0.004597 / 0.000200 (0.004397) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024296 / 0.037411 (-0.013115) | 0.099167 / 0.014526 (0.084641) | 0.108257 / 0.176557 (-0.068299) | 0.143434 / 0.737135 (-0.593701) | 0.111933 / 0.296338 (-0.184406) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440306 / 0.215209 (0.225096) | 4.374065 / 2.077655 (2.296410) | 2.072653 / 1.504120 (0.568533) | 1.864829 / 1.541195 (0.323635) | 1.927970 / 1.468490 (0.459479) | 0.710118 / 4.584777 (-3.874659) | 3.391216 / 3.745712 (-0.354496) | 1.888847 / 5.269862 (-3.381015) | 1.178740 / 4.565676 (-3.386936) | 0.083950 / 0.424275 (-0.340325) | 0.012567 / 0.007607 (0.004960) | 0.540557 / 0.226044 (0.314513) | 5.437621 / 2.268929 (3.168692) | 2.531165 / 55.444624 (-52.913460) | 2.181450 / 6.876477 (-4.695027) | 2.209108 / 2.142072 (0.067035) | 0.814236 / 4.805227 (-3.990991) | 0.153000 / 6.500664 (-6.347664) | 0.066769 / 0.075469 (-0.008700) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.301057 / 1.841788 (-0.540731) | 14.066786 / 8.074308 (5.992478) | 13.641455 / 10.191392 (3.450063) | 0.138838 / 0.680424 (-0.541586) | 0.016733 / 0.534201 (-0.517468) | 0.391823 / 0.579283 (-0.187460) | 0.390817 / 0.434364 (-0.043547) | 0.487682 / 0.540337 (-0.052656) | 0.581134 / 1.386936 (-0.805802) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b065547654efa0ec633cf373ac1512884c68b2e1 \"CML watermark\")\n" ]
2023-02-01T10:20:55
2023-02-09T09:29:08
2023-02-09T09:22:23
As pointed out by @merveenoyan, default behavior of `Dataset.to_csv` adds the index as an additional column without name. This PR changes the default behavior, so that now the index column is not written. To add the index column, now you need to pass `index=True` and also `index_label=<name of the index colum>` to name that column. CC: @merveenoyan
albertvillanova
https://github.com/huggingface/datasets/pull/5490
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5490", "html_url": "https://github.com/huggingface/datasets/pull/5490", "diff_url": "https://github.com/huggingface/datasets/pull/5490.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5490.patch", "merged_at": "2023-02-09T09:22:23" }
true
1,565,761,705
5,489
Pin dill lower version
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008798 / 0.011353 (-0.002554) | 0.005313 / 0.011008 (-0.005695) | 0.099234 / 0.038508 (0.060726) | 0.033935 / 0.023109 (0.010826) | 0.306610 / 0.275898 (0.030712) | 0.373151 / 0.323480 (0.049671) | 0.008305 / 0.007986 (0.000320) | 0.004647 / 0.004328 (0.000319) | 0.079984 / 0.004250 (0.075733) | 0.042546 / 0.037052 (0.005493) | 0.355105 / 0.258489 (0.096616) | 0.332769 / 0.293841 (0.038928) | 0.037708 / 0.128546 (-0.090839) | 0.012141 / 0.075646 (-0.063505) | 0.365338 / 0.419271 (-0.053933) | 0.048875 / 0.043533 (0.005343) | 0.301771 / 0.255139 (0.046632) | 0.323301 / 0.283200 (0.040101) | 0.099116 / 0.141683 (-0.042566) | 1.463948 / 1.452155 (0.011793) | 1.563006 / 1.492716 (0.070290) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219799 / 0.018006 (0.201793) | 0.524126 / 0.000490 (0.523636) | 0.003899 / 0.000200 (0.003699) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028361 / 0.037411 (-0.009050) | 0.111386 / 0.014526 (0.096860) | 0.125749 / 0.176557 (-0.050807) | 0.167026 / 0.737135 (-0.570109) | 0.132082 / 0.296338 (-0.164257) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.385046 / 0.215209 (0.169837) | 3.933129 / 2.077655 (1.855475) | 1.823395 / 1.504120 (0.319276) | 1.646468 / 1.541195 (0.105273) | 1.658835 / 1.468490 (0.190344) | 0.708300 / 4.584777 (-3.876477) | 4.001478 / 3.745712 (0.255766) | 2.221773 / 5.269862 (-3.048089) | 1.597925 / 4.565676 (-2.967751) | 0.088699 / 0.424275 (-0.335577) | 0.013575 / 0.007607 (0.005968) | 0.520577 / 0.226044 (0.294533) | 5.044313 / 2.268929 (2.775385) | 2.239862 / 55.444624 (-53.204763) | 2.060394 / 6.876477 (-4.816083) | 2.060684 / 2.142072 (-0.081389) | 0.844862 / 4.805227 (-3.960365) | 0.190321 / 6.500664 (-6.310343) | 0.071595 / 0.075469 (-0.003875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.400048 / 1.841788 (-0.441740) | 15.684159 / 8.074308 (7.609851) | 14.369298 / 10.191392 (4.177906) | 0.164874 / 0.680424 (-0.515550) | 0.033219 / 0.534201 (-0.500982) | 0.449176 / 0.579283 (-0.130107) | 0.456560 / 0.434364 (0.022196) | 0.517978 / 0.540337 (-0.022359) | 0.635467 / 1.386936 (-0.751469) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007263 / 0.011353 (-0.004089) | 0.005451 / 0.011008 (-0.005558) | 0.078785 / 0.038508 (0.040277) | 0.032656 / 0.023109 (0.009546) | 0.346384 / 0.275898 (0.070486) | 0.390778 / 0.323480 (0.067299) | 0.005848 / 0.007986 (-0.002137) | 0.004565 / 0.004328 (0.000236) | 0.077903 / 0.004250 (0.073652) | 0.048659 / 0.037052 (0.011606) | 0.368629 / 0.258489 (0.110140) | 0.401632 / 0.293841 (0.107791) | 0.038516 / 0.128546 (-0.090030) | 0.011895 / 0.075646 (-0.063752) | 0.089185 / 0.419271 (-0.330086) | 0.049875 / 0.043533 (0.006342) | 0.344771 / 0.255139 (0.089632) | 0.378237 / 0.283200 (0.095038) | 0.099184 / 0.141683 (-0.042498) | 1.505058 / 1.452155 (0.052903) | 1.555330 / 1.492716 (0.062614) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209132 / 0.018006 (0.191126) | 0.479928 / 0.000490 (0.479438) | 0.005923 / 0.000200 (0.005723) | 0.000113 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029187 / 0.037411 (-0.008224) | 0.117026 / 0.014526 (0.102500) | 0.131834 / 0.176557 (-0.044722) | 0.172797 / 0.737135 (-0.564339) | 0.129098 / 0.296338 (-0.167240) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450214 / 0.215209 (0.235005) | 4.323950 / 2.077655 (2.246295) | 2.210100 / 1.504120 (0.705980) | 2.058733 / 1.541195 (0.517538) | 1.968191 / 1.468490 (0.499701) | 0.694918 / 4.584777 (-3.889859) | 4.176559 / 3.745712 (0.430846) | 2.118211 / 5.269862 (-3.151651) | 1.410652 / 4.565676 (-3.155024) | 0.093606 / 0.424275 (-0.330669) | 0.013729 / 0.007607 (0.006122) | 0.528463 / 0.226044 (0.302418) | 5.311766 / 2.268929 (3.042837) | 2.522981 / 55.444624 (-52.921644) | 2.177191 / 6.876477 (-4.699285) | 2.211448 / 2.142072 (0.069375) | 0.824334 / 4.805227 (-3.980893) | 0.166642 / 6.500664 (-6.334022) | 0.062774 / 0.075469 (-0.012695) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.367573 / 1.841788 (-0.474215) | 15.913637 / 8.074308 (7.839328) | 13.397411 / 10.191392 (3.206019) | 0.162599 / 0.680424 (-0.517825) | 0.020325 / 0.534201 (-0.513876) | 0.438745 / 0.579283 (-0.140538) | 0.449892 / 0.434364 (0.015528) | 0.556226 / 0.540337 (0.015888) | 0.672661 / 1.386936 (-0.714275) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f810b7011a8a4ab077a1847c024d2d9e267b065 \"CML watermark\")\n" ]
2023-02-01T09:33:42
2023-02-02T07:48:09
2023-02-02T07:40:43
Pin `dill` lower version compatible with `datasets`. Related to: - #5487 - #288 Note that the required `dill._dill` module was introduced in dill-2.8.0, however we have heuristically tested that datasets can only be installed with dill>=3.0.0 (otherwise pip hangs indefinitely while preparing metadata for multiprocess-0.70.7)
albertvillanova
https://github.com/huggingface/datasets/pull/5489
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5489", "html_url": "https://github.com/huggingface/datasets/pull/5489", "diff_url": "https://github.com/huggingface/datasets/pull/5489.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5489.patch", "merged_at": "2023-02-02T07:40:43" }
true
1,565,025,262
5,488
Error loading MP3 files from CommonVoice
closed
[ "Hi @kradonneoh, thanks for reporting.\r\n\r\nPlease note that to work with audio datasets (and specifically with MP3 files) we have detailed installation instructions in our docs: https://huggingface.co/docs/datasets/installation#audio\r\n- one of the requirements is torchaudio<0.12.0\r\n\r\nLet us know if the problem persists after having followed them.", "I saw that and have followed it (hence the Expected Behavior section of the bug report). \r\n\r\nIs there no intention of updating to the latest version? It does limit the version of `torch` I can use, which isnโ€™t ideal.", "@kradonneoh hey! actually with `ffmpeg4` loading of mp3 files should work, so this is a not expected behavior and we need to investigate it. It works on my side with `torchaudio==0.13` and `ffmpeg==4.2.7`. Which `torchaudio` version do you use?\r\n\r\n`datasets` should support decoding of mp3 files with `torchaudio` when its version is `>0.12` but as you noted it requires `ffmpeg>4`, we need to fix this in the documentation, thank you for pointing to this! \r\n\r\nBut according to your traceback it seems that it tries to use [`libsndfile`](https://github.com/libsndfile/libsndfile) backend for mp3 decoding. And `libsndfile` library supports mp3 decoding starting from version 1.1.0 which on Linux has to be compiled from source for now afaik. \r\n\r\nfyi - we are aiming at getting rid of `torchaudio` dependency at all by the next major library release in favor of `libsndfile` too.", "We now decode MP3 with `soundfile`, so I'm closing this issue" ]
2023-01-31T21:25:33
2023-03-02T16:25:14
2023-03-02T16:25:13
### Describe the bug When loading a CommonVoice dataset with `datasets==2.9.0` and `torchaudio>=0.12.0`, I get an error reading the audio arrays: ```python --------------------------------------------------------------------------- LibsndfileError Traceback (most recent call last) ~/.local/lib/python3.8/site-packages/datasets/features/audio.py in _decode_mp3(self, path_or_file) 310 try: # try torchaudio anyway because sometimes it works (depending on the os and os packages installed) --> 311 array, sampling_rate = self._decode_mp3_torchaudio(path_or_file) 312 except RuntimeError: ~/.local/lib/python3.8/site-packages/datasets/features/audio.py in _decode_mp3_torchaudio(self, path_or_file) 351 --> 352 array, sampling_rate = torchaudio.load(path_or_file, format="mp3") 353 if self.sampling_rate and self.sampling_rate != sampling_rate: ~/.local/lib/python3.8/site-packages/torchaudio/backend/soundfile_backend.py in load(filepath, frame_offset, num_frames, normalize, channels_first, format) 204 """ --> 205 with soundfile.SoundFile(filepath, "r") as file_: 206 if file_.format != "WAV" or normalize: ~/.local/lib/python3.8/site-packages/soundfile.py in __init__(self, file, mode, samplerate, channels, subtype, endian, format, closefd) 654 format, subtype, endian) --> 655 self._file = self._open(file, mode_int, closefd) 656 if set(mode).issuperset('r+') and self.seekable(): ~/.local/lib/python3.8/site-packages/soundfile.py in _open(self, file, mode_int, closefd) 1212 err = _snd.sf_error(file_ptr) -> 1213 raise LibsndfileError(err, prefix="Error opening {0!r}: ".format(self.name)) 1214 if mode_int == _snd.SFM_WRITE: LibsndfileError: Error opening <_io.BytesIO object at 0x7fa539462090>: File contains data in an unknown format. ``` I assume this is because there's some issue with the mp3 decoding process. I've verified that I have `ffmpeg>=4` (on a Linux distro), which appears to be the fallback backend for `torchaudio,` (at least according to #4889). ### Steps to reproduce the bug ```python dataset = load_dataset("mozilla-foundation/common_voice_11_0", "be", split="train") dataset[0] ``` ### Expected behavior Similar behavior to `torchaudio<0.12.0`, which doesn't result in a `LibsndfileError` ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 10.0.1 - Pandas version: 1.5.1
kradonneoh
https://github.com/huggingface/datasets/issues/5488
null
false
1,564,480,121
5,487
Incorrect filepath for dill module
closed
[ "Hi! The correct path is still `dill._dill.XXXX` in the latest release. What do you get when you run `python -c \"import dill; print(dill.__version__)\"` in your environment?", "`0.3.6` I feel like that's bad news, because it's probably not the issue.\r\n\r\nMy mistake, about the wrong path guess. I think I didn't notice that the first `dill` in the path isn't supposed to be included in the path specification in python.\r\n<img width=\"146\" alt=\"Screen Shot 2023-01-31 at 12 58 32 PM\" src=\"https://user-images.githubusercontent.com/35349273/215844209-74af6a8f-9bff-4c75-9495-44c658c8e9f7.png\">\r\n", "Hi, @avivbrokman, this issue you report appeared only with old versions of dill. See:\r\n- #288\r\n\r\nAre you sure you are in the right Python environment?\r\n- Please note that Jupyter (where I guess you get the error) may have multiple execution backends (IPython kernels) that might be different from the Python environment your are using to get the dill version\r\n - Have you run `import dill; print(dill.__version__)` in the same Jupyter/IPython that you were using when you got the error while executing `import datasets`?", "I'm using spyder, and I am still getting `0.3.6` for `dill`, so unfortunately #288 isn't applicable, I think. However, I found something odd that I believe is a clue: \r\n\r\n```\r\nimport inspect\r\nimport dill\r\n\r\ninspect.getfile(dill)\r\n>>> '/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/dill/__init__.py'\r\n```\r\n\r\nI checked out the directory, and there is no `dill` subdirectory within '/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/dill`, as there should be. Rather, `_dill.py` is in '/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/dill` itself. \r\n\r\n If I run `pip install dill` or `pip install --upgrade dill`, I get the message `Requirement already satisfied: dill in ./opt/anaconda3/lib/python3.9/site-packages (0.3.6)`. If I run `conda upgrade dill`, I get the message `Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.` a couple of times, followed by\r\n\r\n```\r\nSolving environment: failed\r\nSolving environment: / \r\nFound conflicts! Looking for incompatible packages.\r\n```\r\n\r\nAnd then terminal proceeds to list conflicts between different packages I have.\r\n\r\nThis is all very strange to me because I recently uninstalled and reinstalled `anaconda`.\r\n", "As I said above, I guess this is not a problem with `datasets`. I think you have different Python environments: one with the new dill version (the one you get while using pip) and other with the old dill version (the one where you get the AttributeError).\r\n\r\nYou should update `dill` in the Python environment you are using within spyder.\r\n\r\nPlease note that the `_dill` module is present in the `dill` package since their 2.8.0 version." ]
2023-01-31T15:01:08
2023-02-24T16:18:36
2023-02-24T16:18:36
### Describe the bug I installed the `datasets` package and when I try to `import` it, I get the following error: ``` Traceback (most recent call last): File "/var/folders/jt/zw5g74ln6tqfdzsl8tx378j00000gn/T/ipykernel_3805/3458380017.py", line 1, in <module> import datasets File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 66, in <module> from .arrow_writer import ArrowWriter, OptimizedTypedSequence File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/arrow_writer.py", line 27, in <module> from .features import Features, Image, Value File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/features/__init__.py", line 17, in <module> from .audio import Audio File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/features/audio.py", line 12, in <module> from ..download.streaming_download_manager import xopen File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/download/__init__.py", line 9, in <module> from .download_manager import DownloadManager, DownloadMode File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/download/download_manager.py", line 36, in <module> from ..utils.py_utils import NestedDataStructure, map_nested, size_str File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 602, in <module> class Pickler(dill.Pickler): File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 605, in Pickler dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy()) AttributeError: module 'dill' has no attribute '_dill' ``` Looking at the github source code for dill, it appears that `datasets` has a bug or is not compatible with the latest `dill`. Specifically, rather than `dill._dill.XXXX` it should be `dill.dill._dill.XXXX`. But given the popularity of `datasets` I feel confused about me being the first person to have this issue, so it makes me wonder if I'm misdiagnosing the issue. ### Steps to reproduce the bug Install `dill` and `datasets` packages and then `import datasets` ### Expected behavior I expect `datasets` to import. ### Environment info - `datasets` version: 2.9.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.9.13 - PyArrow version: 11.0.0 - Pandas version: 1.4.4
avivbrokman
https://github.com/huggingface/datasets/issues/5487
null
false
1,564,059,749
5,486
Adding `sep` to TextConfig
open
[ "Hi @omar-araboghli, thanks for your proposal.\r\n\r\nHave you tried to use \"csv\" loader instead of \"text\"? That already has a `sep` argument.", "Hi @albertvillanova, thanks for the quick response!\r\n\r\nIndeed, I have been trying to use `csv` instead of `text`. However I am still not able to define range of rows as one sequence, that is achievable with passing `sample_by='paragraph'` to the `TextConfig`\r\n\r\nFor instance, the below code\r\n\r\n```python\r\nimport datasets\r\n\r\ndataset = datasets.load_dataset(\r\n path='csv',\r\n data_files={'train': TRAINING_SET_PATH},\r\n sep='\\t',\r\n header=None,\r\n column_names=['tokens', 'pos_tags', 'chunk_tags', 'ner_tags']\r\n)\r\n```\r\n\r\nleads to \r\n\r\n```python\r\ndataset\r\n>>> DatasetDict({\r\n train: Dataset({\r\n features: ['tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],\r\n num_rows: 62543\r\n })\r\n})\r\n\r\ndataset['train'][0]\r\n>>> {'tokens': 'Distribution',\r\n 'pos_tags': 'NN',\r\n 'chunk_tags': 'O',\r\n 'ner_tags': 'O'\r\n}\r\n```\r\nIs there a way to deal with multiple csv rows as one dataset instance, where each column is a sequence of those rows ?" ]
2023-01-31T10:39:53
2023-01-31T14:50:18
null
I have a local a `.txt` file that follows the `CONLL2003` format which I need to load using `load_script`. However, by using `sample_by='line'`, one can only split the dataset into lines without splitting each line into columns. Would it be reasonable to add a `sep` argument in combination with `sample_by='paragraph'` to parse a paragraph into an array for each column ? If so, I am happy to contribute! ## Environment * `python 3.8.10` * `datasets 2.9.0` ## Snippet of `train.txt` ```txt Distribution NN O O and NN O O dynamics NN O O of NN O O electron NN O B-RP complexes NN O I-RP in NN O O cyanobacterial NN O B-R membranes NN O I-R The NN O O occurrence NN O O of NN O O prostaglandin NN O B-R F2ฮฑ NN O I-R in NN O O Pharbitis NN O B-R seedlings NN O I-R grown NN O O under NN O O short NN O B-P days NN O I-P or NN O I-P days NN O I-P ``` ## Current Behaviour ```python # defining 4 features ['tokens', 'pos_tags', 'chunk_tags', 'ner_tags'] here would fail with `ValueError: Length of names (4) does not match length of arrays (1)` dataset = datasets.load_dataset(path='text', features=features, data_files={'train': 'train.txt'}, sample_by='line') dataset['train']['tokens'][0] >>> 'Distribution\tNN\tO\tO' ``` ## Expected Behaviour / Suggestion ```python # suppose we defined 4 features ['tokens', 'pos_tags', 'chunk_tags', 'ner_tags'] dataset = datasets.load_dataset(path='text', features=features, data_files={'train': 'train.txt'}, sample_by='paragraph', sep='\t') dataset['train']['tokens'][0] >>> ['Distribution', 'and', 'dynamics', ... ] dataset['train']['ner_tags'][0] >>> ['O', 'O', 'O', ... ] ```
omar-araboghli
https://github.com/huggingface/datasets/issues/5486
null
false
1,563,002,829
5,485
Add section in tutorial for IterableDataset
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008492 / 0.011353 (-0.002861) | 0.004717 / 0.011008 (-0.006292) | 0.101111 / 0.038508 (0.062602) | 0.029129 / 0.023109 (0.006019) | 0.307564 / 0.275898 (0.031666) | 0.367038 / 0.323480 (0.043558) | 0.007105 / 0.007986 (-0.000881) | 0.003622 / 0.004328 (-0.000706) | 0.078370 / 0.004250 (0.074120) | 0.036960 / 0.037052 (-0.000093) | 0.315612 / 0.258489 (0.057123) | 0.353601 / 0.293841 (0.059760) | 0.032900 / 0.128546 (-0.095647) | 0.011405 / 0.075646 (-0.064241) | 0.322331 / 0.419271 (-0.096940) | 0.040823 / 0.043533 (-0.002710) | 0.306734 / 0.255139 (0.051595) | 0.328155 / 0.283200 (0.044955) | 0.087169 / 0.141683 (-0.054514) | 1.460543 / 1.452155 (0.008389) | 1.498094 / 1.492716 (0.005378) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011863 / 0.018006 (-0.006143) | 0.416315 / 0.000490 (0.415826) | 0.003463 / 0.000200 (0.003263) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023219 / 0.037411 (-0.014192) | 0.096469 / 0.014526 (0.081943) | 0.105960 / 0.176557 (-0.070596) | 0.148993 / 0.737135 (-0.588142) | 0.108112 / 0.296338 (-0.188226) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415662 / 0.215209 (0.200453) | 4.155111 / 2.077655 (2.077456) | 1.834943 / 1.504120 (0.330823) | 1.622752 / 1.541195 (0.081557) | 1.701630 / 1.468490 (0.233140) | 0.690596 / 4.584777 (-3.894181) | 3.399385 / 3.745712 (-0.346327) | 3.140521 / 5.269862 (-2.129341) | 1.609152 / 4.565676 (-2.956524) | 0.082132 / 0.424275 (-0.342143) | 0.012343 / 0.007607 (0.004735) | 0.532715 / 0.226044 (0.306670) | 5.323032 / 2.268929 (3.054104) | 2.326625 / 55.444624 (-53.118000) | 1.944263 / 6.876477 (-4.932213) | 1.994015 / 2.142072 (-0.148058) | 0.813805 / 4.805227 (-3.991422) | 0.149233 / 6.500664 (-6.351431) | 0.065318 / 0.075469 (-0.010151) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212441 / 1.841788 (-0.629347) | 13.979069 / 8.074308 (5.904761) | 14.003998 / 10.191392 (3.812606) | 0.146956 / 0.680424 (-0.533468) | 0.028564 / 0.534201 (-0.505637) | 0.392370 / 0.579283 (-0.186913) | 0.399695 / 0.434364 (-0.034669) | 0.473481 / 0.540337 (-0.066856) | 0.562625 / 1.386936 (-0.824311) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006821 / 0.011353 (-0.004532) | 0.004570 / 0.011008 (-0.006438) | 0.076217 / 0.038508 (0.037709) | 0.028888 / 0.023109 (0.005779) | 0.345431 / 0.275898 (0.069533) | 0.389246 / 0.323480 (0.065766) | 0.005939 / 0.007986 (-0.002046) | 0.003356 / 0.004328 (-0.000973) | 0.075880 / 0.004250 (0.071629) | 0.041427 / 0.037052 (0.004374) | 0.344481 / 0.258489 (0.085992) | 0.398508 / 0.293841 (0.104667) | 0.031801 / 0.128546 (-0.096745) | 0.011763 / 0.075646 (-0.063884) | 0.085600 / 0.419271 (-0.333672) | 0.042656 / 0.043533 (-0.000876) | 0.345893 / 0.255139 (0.090754) | 0.376910 / 0.283200 (0.093711) | 0.092451 / 0.141683 (-0.049232) | 1.461222 / 1.452155 (0.009068) | 1.555822 / 1.492716 (0.063106) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235781 / 0.018006 (0.217774) | 0.418485 / 0.000490 (0.417995) | 0.005560 / 0.000200 (0.005360) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025410 / 0.037411 (-0.012001) | 0.103780 / 0.014526 (0.089254) | 0.110183 / 0.176557 (-0.066374) | 0.151097 / 0.737135 (-0.586039) | 0.112539 / 0.296338 (-0.183799) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436686 / 0.215209 (0.221477) | 4.341594 / 2.077655 (2.263940) | 2.062309 / 1.504120 (0.558190) | 1.857461 / 1.541195 (0.316267) | 1.947204 / 1.468490 (0.478713) | 0.699641 / 4.584777 (-3.885136) | 3.406983 / 3.745712 (-0.338729) | 3.294705 / 5.269862 (-1.975157) | 1.360582 / 4.565676 (-3.205095) | 0.083025 / 0.424275 (-0.341250) | 0.012461 / 0.007607 (0.004854) | 0.537767 / 0.226044 (0.311722) | 5.393316 / 2.268929 (3.124387) | 2.516692 / 55.444624 (-52.927932) | 2.163987 / 6.876477 (-4.712490) | 2.220480 / 2.142072 (0.078408) | 0.810648 / 4.805227 (-3.994579) | 0.151820 / 6.500664 (-6.348844) | 0.068080 / 0.075469 (-0.007389) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.279382 / 1.841788 (-0.562405) | 13.989947 / 8.074308 (5.915638) | 14.039229 / 10.191392 (3.847836) | 0.141071 / 0.680424 (-0.539352) | 0.017118 / 0.534201 (-0.517083) | 0.381558 / 0.579283 (-0.197725) | 0.390407 / 0.434364 (-0.043957) | 0.440920 / 0.540337 (-0.099418) | 0.525478 / 1.386936 (-0.861458) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#eeedb5167d150888a640cd70ca63d6d72bbe1043 \"CML watermark\")\n" ]
2023-01-30T18:43:04
2023-02-01T18:15:38
2023-02-01T18:08:46
Introduces an `IterableDataset` and how to access it in the tutorial section. It also adds a brief next step section at the end to provide a path for users who want more explanation and a path for users who want something more practical and learn how to preprocess these dataset types. It'll complement the awesome new doc introduced in: - #5410
stevhliu
https://github.com/huggingface/datasets/pull/5485
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5485", "html_url": "https://github.com/huggingface/datasets/pull/5485", "diff_url": "https://github.com/huggingface/datasets/pull/5485.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5485.patch", "merged_at": "2023-02-01T18:08:46" }
true
1,562,877,070
5,484
Update docs for `nyu_depth_v2` dataset
closed
[ "I think I need to create another PR on https://huggingface.co/datasets/huggingface/documentation-images/tree/main/datasets for hosting the images there?", "_The documentation is not available anymore as the PR was closed or merged._", "Thanks for the update @awsaf49 !", "> Thanks a lot for the updates!\r\n> \r\n> Just some minor things remain and the we should be good to ship this ๐Ÿš€\r\n\r\n@sayakpaul I have updated the minor things. Please approve the workflows", "I think this PR is good to go..\r\n@sayakpaul @lhoestq ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009064 / 0.011353 (-0.002289) | 0.005262 / 0.011008 (-0.005746) | 0.099608 / 0.038508 (0.061100) | 0.035015 / 0.023109 (0.011906) | 0.296501 / 0.275898 (0.020602) | 0.353619 / 0.323480 (0.030139) | 0.007903 / 0.007986 (-0.000083) | 0.004093 / 0.004328 (-0.000235) | 0.075260 / 0.004250 (0.071009) | 0.043142 / 0.037052 (0.006089) | 0.307755 / 0.258489 (0.049266) | 0.336340 / 0.293841 (0.042499) | 0.038596 / 0.128546 (-0.089950) | 0.011861 / 0.075646 (-0.063786) | 0.334226 / 0.419271 (-0.085045) | 0.051472 / 0.043533 (0.007940) | 0.298539 / 0.255139 (0.043400) | 0.316856 / 0.283200 (0.033656) | 0.108620 / 0.141683 (-0.033063) | 1.434901 / 1.452155 (-0.017254) | 1.468368 / 1.492716 (-0.024348) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208402 / 0.018006 (0.190395) | 0.445799 / 0.000490 (0.445309) | 0.003704 / 0.000200 (0.003504) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025435 / 0.037411 (-0.011976) | 0.105874 / 0.014526 (0.091348) | 0.115652 / 0.176557 (-0.060905) | 0.150872 / 0.737135 (-0.586263) | 0.121705 / 0.296338 (-0.174633) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397816 / 0.215209 (0.182607) | 3.977766 / 2.077655 (1.900111) | 1.850848 / 1.504120 (0.346728) | 1.686062 / 1.541195 (0.144867) | 1.786277 / 1.468490 (0.317787) | 0.696250 / 4.584777 (-3.888527) | 3.785255 / 3.745712 (0.039543) | 3.355013 / 5.269862 (-1.914849) | 1.818232 / 4.565676 (-2.747444) | 0.085408 / 0.424275 (-0.338867) | 0.012567 / 0.007607 (0.004960) | 0.524185 / 0.226044 (0.298140) | 5.061975 / 2.268929 (2.793047) | 2.299866 / 55.444624 (-53.144758) | 1.966709 / 6.876477 (-4.909768) | 2.018760 / 2.142072 (-0.123313) | 0.841341 / 4.805227 (-3.963886) | 0.166374 / 6.500664 (-6.334290) | 0.061854 / 0.075469 (-0.013615) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221666 / 1.841788 (-0.620122) | 14.373194 / 8.074308 (6.298886) | 14.253614 / 10.191392 (4.062222) | 0.172979 / 0.680424 (-0.507445) | 0.029176 / 0.534201 (-0.505025) | 0.447399 / 0.579283 (-0.131884) | 0.443663 / 0.434364 (0.009299) | 0.537071 / 0.540337 (-0.003267) | 0.640539 / 1.386936 (-0.746397) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007019 / 0.011353 (-0.004334) | 0.005091 / 0.011008 (-0.005917) | 0.074588 / 0.038508 (0.036080) | 0.032391 / 0.023109 (0.009282) | 0.340548 / 0.275898 (0.064650) | 0.367159 / 0.323480 (0.043679) | 0.005594 / 0.007986 (-0.002392) | 0.004003 / 0.004328 (-0.000325) | 0.073946 / 0.004250 (0.069695) | 0.045921 / 0.037052 (0.008868) | 0.340245 / 0.258489 (0.081756) | 0.397958 / 0.293841 (0.104117) | 0.036539 / 0.128546 (-0.092007) | 0.012258 / 0.075646 (-0.063388) | 0.087406 / 0.419271 (-0.331865) | 0.049276 / 0.043533 (0.005743) | 0.345235 / 0.255139 (0.090096) | 0.361250 / 0.283200 (0.078050) | 0.100757 / 0.141683 (-0.040926) | 1.464644 / 1.452155 (0.012489) | 1.545852 / 1.492716 (0.053136) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222952 / 0.018006 (0.204945) | 0.434607 / 0.000490 (0.434117) | 0.000438 / 0.000200 (0.000238) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028834 / 0.037411 (-0.008577) | 0.107523 / 0.014526 (0.092997) | 0.122077 / 0.176557 (-0.054479) | 0.156574 / 0.737135 (-0.580561) | 0.122917 / 0.296338 (-0.173421) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417292 / 0.215209 (0.202083) | 4.165980 / 2.077655 (2.088325) | 1.996731 / 1.504120 (0.492611) | 1.802946 / 1.541195 (0.261751) | 1.878456 / 1.468490 (0.409966) | 0.711035 / 4.584777 (-3.873742) | 3.847357 / 3.745712 (0.101644) | 2.088354 / 5.269862 (-3.181508) | 1.344763 / 4.565676 (-3.220913) | 0.086356 / 0.424275 (-0.337919) | 0.012530 / 0.007607 (0.004923) | 0.511693 / 0.226044 (0.285648) | 5.126093 / 2.268929 (2.857165) | 2.490023 / 55.444624 (-52.954602) | 2.180274 / 6.876477 (-4.696202) | 2.221511 / 2.142072 (0.079438) | 0.836348 / 4.805227 (-3.968879) | 0.169554 / 6.500664 (-6.331110) | 0.064555 / 0.075469 (-0.010914) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293466 / 1.841788 (-0.548321) | 14.785700 / 8.074308 (6.711392) | 13.858493 / 10.191392 (3.667101) | 0.161777 / 0.680424 (-0.518646) | 0.017794 / 0.534201 (-0.516407) | 0.426286 / 0.579283 (-0.152997) | 0.422517 / 0.434364 (-0.011847) | 0.530777 / 0.540337 (-0.009560) | 0.634822 / 1.386936 (-0.752114) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c6e08fcfc3a04e53430c26fa7c07da4cb18d977d \"CML watermark\")\n" ]
2023-01-30T17:37:08
2023-09-29T06:43:11
2023-02-05T14:15:04
This PR will fix the issue mentioned in #5461. Here is brief overview, ## Bug: Discrepancy between depth map of `nyu_depth_v2` dataset [here](https://huggingface.co/docs/datasets/main/en/depth_estimation) and actual depth map. Depth values somehow got **discretized/clipped** resulting in depth maps that are different from actual ones. Here is a side-by-side comparison, ![image](https://user-images.githubusercontent.com/36858976/214381162-1d9582c2-6750-4114-a01a-61ca1cd5f872.png) ## Fix: When I first loaded the datasets from HF I noticed it was 30GB but in DenseDepth data is only 4GB with dtype=uint8. This means data from fast-depth (before loading to HF) must have high precision. So when I tried to dig deeper by directly loading depth_map from `h5py`, I found depth_map from `h5py` came with `float32`. But when the data is processed in HF with `datasets.Image()` it was directly converted to `uint8` from `float32` hence the **discretized** depth map. https://github.com/huggingface/datasets/blob/c78559cacbb0ca6e0bc8bfc313cc0359f8c23ead/src/datasets/features/image.py#L91-L93 cc: @sayakpaul @lhoestq
awsaf49
https://github.com/huggingface/datasets/pull/5484
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5484", "html_url": "https://github.com/huggingface/datasets/pull/5484", "diff_url": "https://github.com/huggingface/datasets/pull/5484.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5484.patch", "merged_at": "2023-02-05T14:15:04" }
true
1,560,894,690
5,483
Unable to upload dataset
closed
[ "Seems to work now, perhaps it was something internal with our university's network." ]
2023-01-28T15:18:26
2023-01-29T08:09:49
2023-01-29T08:09:49
### Describe the bug Uploading a simple dataset ends with an exception ### Steps to reproduce the bug I created a new conda env with python 3.10, pip installed datasets and: ```python >>> from datasets import load_dataset, load_from_disk, Dataset >>> d = Dataset.from_dict({"text": ["hello"] * 2}) >>> d.push_to_hub("ttt111") /home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_hf_folder.py:92: UserWarning: A token has been found in `/a/home/cc/students/cs/kirstain/.huggingface/token`. This is the old path where tokens were stored. The new location is `/home/olab/kirstain/.cache/huggingface/token` which is configurable using `HF_HOME` environment variable. Your token has been copied to this new location. You can now safely delete the old token file manually or use `huggingface-cli logout`. warnings.warn( Creating parquet from Arrow format: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 1/1 [00:00<00:00, 279.94ba/s] Upload 1 LFS files: 0%| | 0/1 [00:02<?, ?it/s] Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:04<?, ?it/s] Traceback (most recent call last): File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 264, in hf_raise_for_status response.raise_for_status() File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/requests/models.py", line 1021, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://s3.us-east-1.amazonaws.com/lfs.huggingface.co/repos/cf/0c/cf0c5ab8a3f729e5f57a8b79a36ecea64a31126f13218591c27ed9a1c7bd9b41/ece885a4bb6bbc8c1bb51b45542b805283d74590f72cd4c45d3ba76628570386?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230128%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230128T151640Z&X-Amz-Expires=900&X-Amz-Signature=89e78e9a9d70add7ed93d453334f4f93c6f29d889d46750a1f2da04af73978db&X-Amz-SignedHeaders=host&x-amz-storage-class=INTELLIGENT_TIERING&x-id=PutObject The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 334, in _inner_upload_lfs_object return _upload_lfs_object( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 391, in _upload_lfs_object lfs_upload( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/lfs.py", line 273, in lfs_upload _upload_single_part( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/lfs.py", line 305, in _upload_single_part hf_raise_for_status(upload_res) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 318, in hf_raise_for_status raise HfHubHTTPError(str(e), response=response) from e huggingface_hub.utils._errors.HfHubHTTPError: 403 Client Error: Forbidden for url: https://s3.us-east-1.amazonaws.com/lfs.huggingface.co/repos/cf/0c/cf0c5ab8a3f729e5f57a8b79a36ecea64a31126f13218591c27ed9a1c7bd9b41/ece885a4bb6bbc8c1bb51b45542b805283d74590f72cd4c45d3ba76628570386?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230128%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230128T151640Z&X-Amz-Expires=900&X-Amz-Signature=89e78e9a9d70add7ed93d453334f4f93c6f29d889d46750a1f2da04af73978db&X-Amz-SignedHeaders=host&x-amz-storage-class=INTELLIGENT_TIERING&x-id=PutObject The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 4909, in push_to_hub repo_id, split, uploaded_size, dataset_nbytes, repo_files, deleted_size = self._push_parquet_shards_to_hub( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 4804, in _push_parquet_shards_to_hub _retry( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 281, in _retry return func(*func_args, **func_kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 124, in _inner_fn return fn(*args, **kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2537, in upload_file commit_info = self.create_commit( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 124, in _inner_fn return fn(*args, **kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2346, in create_commit upload_lfs_files( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 124, in _inner_fn return fn(*args, **kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 346, in upload_lfs_files thread_map( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 94, in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 76, in _executor_map return list(tqdm_class(ex.map(fn, *iterables, **map_args), **kwargs)) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/tqdm/std.py", line 1195, in __iter__ for obj in iterable: File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/_base.py", line 621, in result_iterator yield _result_or_cancel(fs.pop()) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/_base.py", line 319, in _result_or_cancel return fut.result(timeout) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/_base.py", line 458, in result return self.__get_result() File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result raise self._exception File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 338, in _inner_upload_lfs_object raise RuntimeError( RuntimeError: Error while uploading 'data/train-00000-of-00001-6df93048e66df326.parquet' to the Hub. ``` ### Expected behavior The dataset should be uploaded without any exceptions ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-4.15.0-65-generic-x86_64-with-glibc2.27 - Python version: 3.10.9 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
yuvalkirstain
https://github.com/huggingface/datasets/issues/5483
null
false
1,560,853,137
5,482
Reload features from Parquet metadata
closed
[ "I'd be happy to have a look, if nobody else has started working on this yet @lhoestq. \r\n\r\nIt seems to me that for the `arrow` format features are currently attached as metadata [in `datasets.arrow_writer`](https://github.com/huggingface/datasets/blob/5f810b7011a8a4ab077a1847c024d2d9e267b065/src/datasets/arrow_writer.py#L412) and retrieved from the metadata at `load_dataset` time using [`datasets.features.features.from_arrow_schema`](https://github.com/huggingface/datasets/blob/5f810b7011a8a4ab077a1847c024d2d9e267b065/src/datasets/features/features.py#L1602). \r\n\r\nThis will need to be replicated for `parquet` via calls to [this api](https://arrow.apache.org/docs/python/generated/pyarrow.parquet.write_metadata.html) from `io.parquet.ParquetWriter` and `io.parquet.ParquetReader` [respectively](https://github.com/huggingface/datasets/blob/5f810b7011a8a4ab077a1847c024d2d9e267b065/src/datasets/io/parquet.py#L104).\r\n\r\nAny other important considerations?\r\n", "Thanks @MFreidank ! That's correct :)\r\n\r\nReading the metadata to infer the features can be ideally done in the `parquet.py` file in `packaged_builder` when a parquet file is read. You can cast the arrow table to the schema you get from the features.arrow_schema", "#self-assign" ]
2023-01-28T13:12:31
2023-02-12T15:57:02
2023-02-12T15:57:02
The idea would be to allow this : ```python ds.to_parquet("my_dataset/ds.parquet") reloaded = load_dataset("my_dataset") assert ds.features == reloaded.features ``` And it should also work with Image and Audio types (right now they're reloaded as a dict type) This can be implemented by storing and reading the feature types in the parquet metadata, as we do for arrow files.
lhoestq
https://github.com/huggingface/datasets/issues/5482
null
false
1,560,468,195
5,481
Load a cached dataset as iterable
open
[ "Can I work on this issue? I am pretty new to this.", "Hi ! Sure :) you can comment `#self-assign` to assign yourself to this issue.\r\n\r\nI can give you some pointers to get started:\r\n\r\n`load_dataset` works roughly this way:\r\n1. it instantiate a dataset builder using `load_dataset_builder()`\r\n2. the builder download and prepare the dataset as Arrow files in the cache using `download_and_prepare()`\r\n3. the builder returns a Dataset object with `as_dataset()`\r\n\r\nOne way to approach this would be to implement `as_iterable_dataset()` in `builder.py`.\r\n\r\nAnd similarly to `as_dataset()`, you can use the `ArrowReader`. It has a `get_file_instructions()` method that can be helpful. It gives you the files to read as list of dictionaries with those keys: `filename`, `skip` and `take`.\r\n\r\nThe `skip` and `take` arguments are used in case the user wants to load a subset of the dataset, e.g.\r\n```python\r\nload_dataset(..., split=\"train[:10]\")\r\n```\r\n\r\nLet me know if you have questions or if I can help :)", "This use-case is a bit specific, and `load_dataset` already has enough parameters (plus, `streaming=True` also returns an iterable dataset, so we would have to explain the difference), so I think it would be better to add `IterableDataset.from_file` to the API (more flexible and aligned with the goal from https://github.com/huggingface/datasets/issues/3444) instead.", "> This use-case is a bit specific\r\n\r\nThis allows to use `datasets` for large scale training where map-style datasets are too slow and use too much memory in PyTorch. So I would still consider adding it.\r\n\r\nAlternatively we could add this feature one level bellow:\r\n```python\r\nbuilder = load_dataset_builder(...)\r\nbuilder.download_and_prepare()\r\nids = builder.as_iterable_dataset()\r\n```", "Yes, I see how this can be useful. Still, I think `Dataset.to_iterable` + `IterableDataset.from_file` would be much cleaner in terms of the API design (and more flexible since `load_dataset` can only access the \"initial\" (unprocessed) version of a dataset).\r\n\r\nAnd since it can be tricky to manually find the \"initial\" version of a dataset in the cache, maybe `load_dataset` could return an iterable dataset streamed from the cache if `streaming=True` and the cache is up-to-date. ", "> This allows to use datasets for large scale training where map-style datasets are too slow and use too much memory in PyTorch.\r\n\r\nI second that. e.g. In my last experiment Oscar-en uses 16GB RSS RAM per process and when using multiple processes the host quickly runs out cpu memory. ", ">And since it can be tricky to manually find the \"initial\" version of a dataset in the cache, maybe load_dataset could return an iterable dataset streamed from the cache if streaming=True and the cache is up-to-date.\r\n\r\nThis is exactly the need on JeanZay (HPC) - I have the dataset cache ready, but the compute node is offline, so making streaming work off a local cache would address that need.\r\n\r\nIf you will have a working POC I can be the tester. ", "> Yes, I see how this can be useful. Still, I think Dataset.to_iterable + IterableDataset.from_file would be much cleaner in terms of the API design (and more flexible since load_dataset can only access the \"initial\" (unprocessed) version of a dataset).\r\n\r\nI like `IterableDataset.from_file` as well. On the other hand `Dataset.to_iterable` first requires to load a Dataset object, which can take time depending on your hardware and your dataset size (sometimes 1h+).\r\n\r\n> And since it can be tricky to manually find the \"initial\" version of a dataset in the cache, maybe load_dataset could return an iterable dataset streamed from the cache if streaming=True and the cache is up-to-date.\r\n\r\nThat would definitely do the job. I was suggesting a different parameter just to make explicit the difference between\r\n- streaming from the raw data\r\n- streaming from the local cache\r\n\r\nBut I'd be fine with streaming from cache is the cache is up-to-date since it's always faster. We could log a message as usual to make it explicit that the cache is used", "> I was suggesting a different parameter just to make explicit the difference between\r\n\r\nMosaicML's `streaming` library does the same (tries to stream from the local cache if possible), so logging a message should be explicit enough :).", "Ok ! Sounds good then :)", "Hi Both! It has been a while since my first issue so I am gonna go for this one ! #self-assign", "#self-assign", "I like idea of `IterableDataset.from_file`. ", "https://github.com/huggingface/datasets/pull/5821 should be helpful to implement `IterableDataset.from_file`, since it defines a new ArrowExamplesIterable that takes an Arrow tables generator function (e.g. from a file) and can be used in an IterableDataset", "@lhoestq I have just started working on this issue. ", "@lhoestq Thank you for taking over.", "So what's recommanded usage of `IterableDataset.from_file` and `load_dataset`? How about I have multiple arrow files and `load_dataset` is often convenient to handle that.", "If you have multiple Arrow files you can load them using\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\ndata_files = {\"train\": [\"path/to/0.arrow\", \"path/to/1.arrow\", ..., \"path/to/n.arrow\"]}\r\n\r\nds = load_dataset(\"arrow\", data_files=data_files, streaming=True)\r\n```\r\n\r\nThis is equivalent to calling `IterableDataset.from_file` and `concatenate_datasets`.", "Hi! ๐Ÿ‘‹ Iโ€™d love to help with this feature and was wondering if @mariusz-jachimowicz-83 is still working on it. If not, Iโ€™d be happy to pick it up and continue. Let me know! ๐Ÿ™Œ", "I don't think anyone is working on this at the moment, imo the simplest would be to do it one level below\n\n```python\nbuilder = load_dataset_builder(...)\nbuilder.download_and_prepare()\nids = builder.as_iterable_dataset()\n```", "Thanks for the clarification @lhoestq ๐Ÿ™Œ Will share a draft soon", "Follow-up test added in #7629. for as_iterable_dataset() method.\nIโ€™ve added the unit test in a separate PR to keep this one focused on the feature implementation, as the test is optional and can be reviewed independently." ]
2023-01-27T21:43:51
2025-06-19T19:30:52
null
The idea would be to allow something like ```python ds = load_dataset("c4", "en", as_iterable=True) ``` To be used to train models. It would load an IterableDataset from the cached Arrow files. Cc @stas00 Edit : from the discussions we may load from cache when streaming=True
lhoestq
https://github.com/huggingface/datasets/issues/5481
null
false
1,560,364,866
5,480
Select columns of Dataset or DatasetDict
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009963 / 0.011353 (-0.001390) | 0.005512 / 0.011008 (-0.005496) | 0.100495 / 0.038508 (0.061987) | 0.039929 / 0.023109 (0.016820) | 0.299749 / 0.275898 (0.023850) | 0.372330 / 0.323480 (0.048850) | 0.008689 / 0.007986 (0.000703) | 0.004334 / 0.004328 (0.000006) | 0.076469 / 0.004250 (0.072218) | 0.048091 / 0.037052 (0.011039) | 0.303884 / 0.258489 (0.045395) | 0.352747 / 0.293841 (0.058906) | 0.038941 / 0.128546 (-0.089605) | 0.012541 / 0.075646 (-0.063105) | 0.334227 / 0.419271 (-0.085044) | 0.048802 / 0.043533 (0.005269) | 0.295800 / 0.255139 (0.040661) | 0.316222 / 0.283200 (0.033022) | 0.108246 / 0.141683 (-0.033437) | 1.452735 / 1.452155 (0.000580) | 1.466293 / 1.492716 (-0.026423) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010497 / 0.018006 (-0.007510) | 0.507427 / 0.000490 (0.506937) | 0.003054 / 0.000200 (0.002854) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029529 / 0.037411 (-0.007883) | 0.114151 / 0.014526 (0.099625) | 0.120599 / 0.176557 (-0.055957) | 0.161881 / 0.737135 (-0.575255) | 0.127669 / 0.296338 (-0.168669) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399631 / 0.215209 (0.184421) | 3.992997 / 2.077655 (1.915343) | 1.803770 / 1.504120 (0.299650) | 1.612301 / 1.541195 (0.071106) | 1.717846 / 1.468490 (0.249356) | 0.706753 / 4.584777 (-3.878024) | 3.798224 / 3.745712 (0.052512) | 2.169733 / 5.269862 (-3.100128) | 1.358264 / 4.565676 (-3.207413) | 0.086828 / 0.424275 (-0.337447) | 0.012606 / 0.007607 (0.004999) | 0.512085 / 0.226044 (0.286041) | 5.101491 / 2.268929 (2.832563) | 2.285688 / 55.444624 (-53.158936) | 1.955160 / 6.876477 (-4.921317) | 2.045887 / 2.142072 (-0.096186) | 0.878836 / 4.805227 (-3.926392) | 0.166483 / 6.500664 (-6.334181) | 0.062656 / 0.075469 (-0.012814) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215152 / 1.841788 (-0.626636) | 15.436187 / 8.074308 (7.361879) | 14.489951 / 10.191392 (4.298559) | 0.199019 / 0.680424 (-0.481404) | 0.029148 / 0.534201 (-0.505053) | 0.440309 / 0.579283 (-0.138974) | 0.452041 / 0.434364 (0.017677) | 0.527102 / 0.540337 (-0.013236) | 0.634302 / 1.386936 (-0.752634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007814 / 0.011353 (-0.003539) | 0.005582 / 0.011008 (-0.005427) | 0.075466 / 0.038508 (0.036958) | 0.034421 / 0.023109 (0.011312) | 0.342345 / 0.275898 (0.066447) | 0.389943 / 0.323480 (0.066463) | 0.006346 / 0.007986 (-0.001639) | 0.004442 / 0.004328 (0.000113) | 0.074440 / 0.004250 (0.070190) | 0.056383 / 0.037052 (0.019331) | 0.340293 / 0.258489 (0.081804) | 0.394416 / 0.293841 (0.100575) | 0.037217 / 0.128546 (-0.091330) | 0.012597 / 0.075646 (-0.063050) | 0.087005 / 0.419271 (-0.332267) | 0.051626 / 0.043533 (0.008094) | 0.336690 / 0.255139 (0.081551) | 0.369143 / 0.283200 (0.085943) | 0.110764 / 0.141683 (-0.030919) | 1.459003 / 1.452155 (0.006849) | 1.557333 / 1.492716 (0.064617) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319596 / 0.018006 (0.301590) | 0.514697 / 0.000490 (0.514207) | 0.005286 / 0.000200 (0.005086) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032579 / 0.037411 (-0.004832) | 0.111094 / 0.014526 (0.096568) | 0.127827 / 0.176557 (-0.048730) | 0.169967 / 0.737135 (-0.567168) | 0.133149 / 0.296338 (-0.163189) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424637 / 0.215209 (0.209428) | 4.217889 / 2.077655 (2.140235) | 2.044844 / 1.504120 (0.540724) | 1.863513 / 1.541195 (0.322319) | 1.975674 / 1.468490 (0.507184) | 0.695493 / 4.584777 (-3.889284) | 3.815562 / 3.745712 (0.069850) | 3.534427 / 5.269862 (-1.735435) | 1.684874 / 4.565676 (-2.880802) | 0.085560 / 0.424275 (-0.338715) | 0.012439 / 0.007607 (0.004832) | 0.541231 / 0.226044 (0.315187) | 5.287166 / 2.268929 (3.018237) | 2.596622 / 55.444624 (-52.848002) | 2.315913 / 6.876477 (-4.560564) | 2.418454 / 2.142072 (0.276381) | 0.838947 / 4.805227 (-3.966281) | 0.168149 / 6.500664 (-6.332515) | 0.066439 / 0.075469 (-0.009030) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.264814 / 1.841788 (-0.576974) | 15.861324 / 8.074308 (7.787016) | 14.352515 / 10.191392 (4.161123) | 0.167032 / 0.680424 (-0.513391) | 0.017766 / 0.534201 (-0.516435) | 0.421821 / 0.579283 (-0.157462) | 0.426657 / 0.434364 (-0.007707) | 0.526742 / 0.540337 (-0.013595) | 0.623851 / 1.386936 (-0.763085) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#69b19755e9e37b746ef56780a62d21ef20c574d5 \"CML watermark\")\n" ]
2023-01-27T20:06:16
2023-02-13T11:10:13
2023-02-13T09:59:35
Close #5474 and #5468.
daskol
https://github.com/huggingface/datasets/pull/5480
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5480", "html_url": "https://github.com/huggingface/datasets/pull/5480", "diff_url": "https://github.com/huggingface/datasets/pull/5480.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5480.patch", "merged_at": "2023-02-13T09:59:35" }
true
1,560,357,590
5,479
audiofolder works on local env, but creates empty dataset in a remote one, what dependencies could I be missing/outdated
closed
[]
2023-01-27T20:01:22
2023-01-29T05:23:14
2023-01-29T05:23:14
### Describe the bug I'm using a custom audio dataset (400+ audio files) in the correct format for audiofolder. Although loading the dataset with audiofolder works in one local setup, it doesn't in a remote one (it just creates an empty dataset). I have both ffmpeg and libndfile installed on both computers, what could be missing/need to be updated in the one that doesn't work? On the remote env, libsndfile is 1.0.28 and ffmpeg is 4.2.1. from datasets import load_dataset ds = load_dataset("audiofolder", data_dir="...") Here is the output (should be generating 400+ rows): Downloading and preparing dataset audiofolder/default to ... Downloading data files: 0%| | 0/2 [00:00<?, ?it/s] Downloading data files: 0it [00:00, ?it/s] Extracting data files: 0it [00:00, ?it/s] Generating train split: 0 examples [00:00, ? examples/s] Dataset audiofolder downloaded and prepared to ... Subsequent calls will reuse this data. 0%| | 0/1 [00:00<?, ?it/s] DatasetDict({ train: Dataset({ features: ['audio', 'transcription'], num_rows: 1 }) }) Here is my pip environment in the one that doesn't work (uses torch 1.11.a0 from shared env): Package Version ------------------- ------------------- aiofiles 22.1.0 aiohttp 3.8.3 aiosignal 1.3.1 altair 4.2.1 anyio 3.6.2 appdirs 1.4.4 argcomplete 2.0.0 argon2-cffi 20.1.0 astunparse 1.6.3 async-timeout 4.0.2 attrs 21.2.0 audioread 3.0.0 backcall 0.2.0 bleach 4.0.0 certifi 2021.10.8 cffi 1.14.6 charset-normalizer 2.0.12 click 8.1.3 contourpy 1.0.7 cycler 0.11.0 datasets 2.9.0 debugpy 1.4.1 decorator 5.0.9 defusedxml 0.7.1 dill 0.3.6 distlib 0.3.4 entrypoints 0.3 evaluate 0.4.0 expecttest 0.1.3 fastapi 0.89.1 ffmpy 0.3.0 filelock 3.6.0 fonttools 4.38.0 frozenlist 1.3.3 fsspec 2023.1.0 future 0.18.2 gradio 3.16.2 h11 0.14.0 httpcore 0.16.3 httpx 0.23.3 huggingface-hub 0.12.0 idna 3.3 ipykernel 6.2.0 ipython 7.26.0 ipython-genutils 0.2.0 ipywidgets 7.6.3 jedi 0.18.0 Jinja2 3.0.1 jiwer 2.5.1 joblib 1.2.0 jsonschema 3.2.0 jupyter 1.0.0 jupyter-client 6.1.12 jupyter-console 6.4.0 jupyter-core 4.7.1 jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0 kiwisolver 1.4.4 Levenshtein 0.20.2 librosa 0.9.2 linkify-it-py 1.0.3 llvmlite 0.39.1 markdown-it-py 2.1.0 MarkupSafe 2.0.1 matplotlib 3.6.3 matplotlib-inline 0.1.2 mdit-py-plugins 0.3.3 mdurl 0.1.2 mistune 0.8.4 multidict 6.0.4 multiprocess 0.70.14 nbclient 0.5.4 nbconvert 6.1.0 nbformat 5.1.3 nest-asyncio 1.5.1 notebook 6.4.3 numba 0.56.4 numpy 1.20.3 orjson 3.8.5 packaging 21.0 pandas 1.5.3 pandocfilters 1.4.3 parso 0.8.2 pexpect 4.8.0 pickleshare 0.7.5 Pillow 9.4.0 pip 22.3.1 pipx 1.1.0 platformdirs 2.5.2 pooch 1.6.0 prometheus-client 0.11.0 prompt-toolkit 3.0.19 psutil 5.9.0 ptyprocess 0.7.0 pyarrow 10.0.1 pycparser 2.20 pycryptodome 3.16.0 pydantic 1.10.4 pydub 0.25.1 Pygments 2.10.0 pyparsing 2.4.7 pyrsistent 0.18.0 python-dateutil 2.8.2 python-multipart 0.0.5 pytz 2022.7.1 PyYAML 6.0 pyzmq 22.2.1 qtconsole 5.1.1 QtPy 1.10.0 rapidfuzz 2.13.7 regex 2022.10.31 requests 2.27.1 resampy 0.4.2 responses 0.18.0 rfc3986 1.5.0 scikit-learn 1.2.1 scipy 1.6.3 Send2Trash 1.8.0 setuptools 65.5.1 shiboken6 6.3.1 shiboken6-generator 6.3.1 six 1.16.0 sniffio 1.3.0 soundfile 0.11.0 starlette 0.22.0 terminado 0.11.0 testpath 0.5.0 threadpoolctl 3.1.0 tokenizers 0.13.2 toolz 0.12.0 torch 1.11.0a0+gitunknown tornado 6.1 tqdm 4.64.1 traitlets 5.0.5 transformers 4.27.0.dev0 types-dataclasses 0.6.4 typing_extensions 4.1.1 uc-micro-py 1.0.1 urllib3 1.26.9 userpath 1.8.0 uvicorn 0.20.0 virtualenv 20.14.1 wcwidth 0.2.5 webencodings 0.5.1 websockets 10.4 wheel 0.37.1 widgetsnbextension 3.5.1 xxhash 3.2.0 yarl 1.8.2 ### Steps to reproduce the bug Create a pip environment with the packages listed above (make sure ffmpeg and libsndfile is installed with same versions listed above). Create a custom audio dataset and load it in with load_dataset("audiofolder", ...) ### Expected behavior load_dataset should create a dataset with 400+ rows. ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-3.10.0-1160.80.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.9.0 - PyArrow version: 10.0.1 - Pandas version: 1.5.3
jcho19
https://github.com/huggingface/datasets/issues/5479
null
false
1,560,357,583
5,478
Tip for recomputing metadata
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008167 / 0.011353 (-0.003186) | 0.004404 / 0.011008 (-0.006605) | 0.100462 / 0.038508 (0.061954) | 0.028835 / 0.023109 (0.005726) | 0.326759 / 0.275898 (0.050861) | 0.355150 / 0.323480 (0.031670) | 0.007200 / 0.007986 (-0.000786) | 0.003293 / 0.004328 (-0.001035) | 0.078006 / 0.004250 (0.073756) | 0.033298 / 0.037052 (-0.003754) | 0.307119 / 0.258489 (0.048630) | 0.337689 / 0.293841 (0.043848) | 0.033016 / 0.128546 (-0.095530) | 0.011383 / 0.075646 (-0.064263) | 0.321989 / 0.419271 (-0.097283) | 0.039793 / 0.043533 (-0.003740) | 0.295388 / 0.255139 (0.040249) | 0.322694 / 0.283200 (0.039494) | 0.082989 / 0.141683 (-0.058694) | 1.496701 / 1.452155 (0.044546) | 1.548861 / 1.492716 (0.056145) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.176587 / 0.018006 (0.158580) | 0.397660 / 0.000490 (0.397170) | 0.001063 / 0.000200 (0.000863) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022386 / 0.037411 (-0.015025) | 0.096380 / 0.014526 (0.081854) | 0.103032 / 0.176557 (-0.073525) | 0.135050 / 0.737135 (-0.602086) | 0.105941 / 0.296338 (-0.190397) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430989 / 0.215209 (0.215780) | 4.310309 / 2.077655 (2.232654) | 2.142596 / 1.504120 (0.638477) | 1.952043 / 1.541195 (0.410848) | 1.817803 / 1.468490 (0.349312) | 0.690026 / 4.584777 (-3.894751) | 3.315413 / 3.745712 (-0.430299) | 3.370336 / 5.269862 (-1.899525) | 1.668707 / 4.565676 (-2.896970) | 0.081860 / 0.424275 (-0.342415) | 0.012493 / 0.007607 (0.004886) | 0.527779 / 0.226044 (0.301735) | 5.318732 / 2.268929 (3.049804) | 2.467029 / 55.444624 (-52.977596) | 2.247171 / 6.876477 (-4.629306) | 2.270825 / 2.142072 (0.128752) | 0.802288 / 4.805227 (-4.002939) | 0.148895 / 6.500664 (-6.351770) | 0.064967 / 0.075469 (-0.010503) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259304 / 1.841788 (-0.582484) | 13.662441 / 8.074308 (5.588133) | 14.074662 / 10.191392 (3.883270) | 0.152907 / 0.680424 (-0.527516) | 0.028340 / 0.534201 (-0.505861) | 0.397356 / 0.579283 (-0.181927) | 0.392600 / 0.434364 (-0.041764) | 0.467935 / 0.540337 (-0.072402) | 0.539890 / 1.386936 (-0.847046) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006156 / 0.011353 (-0.005197) | 0.004371 / 0.011008 (-0.006637) | 0.076391 / 0.038508 (0.037883) | 0.026455 / 0.023109 (0.003346) | 0.339816 / 0.275898 (0.063917) | 0.370032 / 0.323480 (0.046552) | 0.004614 / 0.007986 (-0.003372) | 0.003200 / 0.004328 (-0.001129) | 0.075408 / 0.004250 (0.071157) | 0.034100 / 0.037052 (-0.002953) | 0.341232 / 0.258489 (0.082743) | 0.380290 / 0.293841 (0.086449) | 0.031021 / 0.128546 (-0.097525) | 0.011562 / 0.075646 (-0.064084) | 0.085564 / 0.419271 (-0.333708) | 0.041431 / 0.043533 (-0.002102) | 0.359570 / 0.255139 (0.104431) | 0.366919 / 0.283200 (0.083719) | 0.088242 / 0.141683 (-0.053441) | 1.460703 / 1.452155 (0.008548) | 1.534351 / 1.492716 (0.041635) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225703 / 0.018006 (0.207697) | 0.395014 / 0.000490 (0.394524) | 0.000385 / 0.000200 (0.000185) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023975 / 0.037411 (-0.013436) | 0.098658 / 0.014526 (0.084132) | 0.105043 / 0.176557 (-0.071513) | 0.139988 / 0.737135 (-0.597148) | 0.106854 / 0.296338 (-0.189484) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442454 / 0.215209 (0.227245) | 4.430860 / 2.077655 (2.353205) | 2.084823 / 1.504120 (0.580704) | 1.870421 / 1.541195 (0.329226) | 1.901618 / 1.468490 (0.433128) | 0.699214 / 4.584777 (-3.885563) | 3.336911 / 3.745712 (-0.408801) | 1.856479 / 5.269862 (-3.413383) | 1.166496 / 4.565676 (-3.399180) | 0.083189 / 0.424275 (-0.341086) | 0.012293 / 0.007607 (0.004686) | 0.543147 / 0.226044 (0.317102) | 5.452030 / 2.268929 (3.183101) | 2.506689 / 55.444624 (-52.937936) | 2.168186 / 6.876477 (-4.708291) | 2.172277 / 2.142072 (0.030205) | 0.813554 / 4.805227 (-3.991673) | 0.152074 / 6.500664 (-6.348590) | 0.066891 / 0.075469 (-0.008579) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278635 / 1.841788 (-0.563153) | 13.690232 / 8.074308 (5.615924) | 13.403201 / 10.191392 (3.211809) | 0.128171 / 0.680424 (-0.552253) | 0.016687 / 0.534201 (-0.517514) | 0.378645 / 0.579283 (-0.200638) | 0.382922 / 0.434364 (-0.051442) | 0.467483 / 0.540337 (-0.072854) | 0.559026 / 1.386936 (-0.827910) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b262d411ec0e252615a140c4e3e60e7dbd38eef1 \"CML watermark\")\n" ]
2023-01-27T20:01:22
2023-01-30T19:22:21
2023-01-30T19:15:26
From this [feedback](https://discuss.huggingface.co/t/nonmatchingsplitssizeserror/30033) on the forum, thought I'd include a tip for recomputing the metadata numbers if it is your own dataset.
stevhliu
https://github.com/huggingface/datasets/pull/5478
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5478", "html_url": "https://github.com/huggingface/datasets/pull/5478", "diff_url": "https://github.com/huggingface/datasets/pull/5478.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5478.patch", "merged_at": "2023-01-30T19:15:26" }
true
1,559,909,892
5,477
Unpin sqlalchemy once issue is fixed
closed
[ "@albertvillanova It looks like that issue has been fixed so I made a PR to unpin sqlalchemy! ", "The source issue:\r\n- https://github.com/pandas-dev/pandas/issues/40686\r\n\r\nhas been fixed:\r\n- https://github.com/pandas-dev/pandas/pull/48576\r\n\r\nThe fix was released yesterday (2023-04-03) only in `pandas-2.0.0`:\r\n- https://github.com/pandas-dev/pandas/releases/tag/v2.0.0\r\n\r\nbut it will not be back-ported to `pandas-1`:\r\n- https://github.com/pandas-dev/pandas/pull/48576#issuecomment-1466467159\r\n\r\nAlso note that `pandas-2.0.0` dropped support for Python 3.7:\r\n- https://github.com/pandas-dev/pandas/issues/41678\r\n- https://github.com/pandas-dev/pandas/pull/41989\r\n\r\nTherefore, we cannot unpin `sqlalchemy` until we drop support for Python 3.7 (these Python users cannot use `pandas-2`)." ]
2023-01-27T15:01:55
2024-01-26T14:50:45
2024-01-26T14:50:45
Once the source issue is fixed: - pandas-dev/pandas#51015 we should revert the pin introduced in: - #5476
albertvillanova
https://github.com/huggingface/datasets/issues/5477
null
false
1,559,594,684
5,476
Pin sqlalchemy
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012442 / 0.011353 (0.001089) | 0.006274 / 0.011008 (-0.004734) | 0.128249 / 0.038508 (0.089741) | 0.040117 / 0.023109 (0.017008) | 0.383725 / 0.275898 (0.107827) | 0.510494 / 0.323480 (0.187014) | 0.009037 / 0.007986 (0.001051) | 0.008256 / 0.004328 (0.003927) | 0.105329 / 0.004250 (0.101079) | 0.046909 / 0.037052 (0.009857) | 0.401980 / 0.258489 (0.143491) | 0.461332 / 0.293841 (0.167491) | 0.065629 / 0.128546 (-0.062917) | 0.020043 / 0.075646 (-0.055604) | 0.453773 / 0.419271 (0.034501) | 0.063456 / 0.043533 (0.019923) | 0.384458 / 0.255139 (0.129319) | 0.449699 / 0.283200 (0.166499) | 0.118197 / 0.141683 (-0.023486) | 1.915080 / 1.452155 (0.462925) | 1.957132 / 1.492716 (0.464416) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209657 / 0.018006 (0.191651) | 0.592478 / 0.000490 (0.591988) | 0.004137 / 0.000200 (0.003937) | 0.000124 / 0.000054 (0.000069) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029607 / 0.037411 (-0.007804) | 0.129559 / 0.014526 (0.115033) | 0.148326 / 0.176557 (-0.028231) | 0.190506 / 0.737135 (-0.546629) | 0.143177 / 0.296338 (-0.153162) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.626166 / 0.215209 (0.410957) | 6.612680 / 2.077655 (4.535026) | 2.432354 / 1.504120 (0.928234) | 2.051482 / 1.541195 (0.510287) | 2.055822 / 1.468490 (0.587332) | 1.210099 / 4.584777 (-3.374678) | 5.498117 / 3.745712 (1.752405) | 3.054838 / 5.269862 (-2.215024) | 2.182875 / 4.565676 (-2.382802) | 0.144518 / 0.424275 (-0.279757) | 0.014132 / 0.007607 (0.006525) | 0.801805 / 0.226044 (0.575761) | 7.911235 / 2.268929 (5.642307) | 3.372762 / 55.444624 (-52.071862) | 2.517266 / 6.876477 (-4.359210) | 2.515329 / 2.142072 (0.373256) | 1.501731 / 4.805227 (-3.303497) | 0.252569 / 6.500664 (-6.248096) | 0.080987 / 0.075469 (0.005518) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.709880 / 1.841788 (-0.131907) | 18.640340 / 8.074308 (10.566032) | 23.560908 / 10.191392 (13.369516) | 0.265680 / 0.680424 (-0.414744) | 0.046438 / 0.534201 (-0.487763) | 0.571973 / 0.579283 (-0.007310) | 0.642425 / 0.434364 (0.208061) | 0.698167 / 0.540337 (0.157830) | 0.842132 / 1.386936 (-0.544804) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009268 / 0.011353 (-0.002085) | 0.006052 / 0.011008 (-0.004956) | 0.133448 / 0.038508 (0.094939) | 0.034417 / 0.023109 (0.011308) | 0.435573 / 0.275898 (0.159675) | 0.479642 / 0.323480 (0.156162) | 0.008016 / 0.007986 (0.000030) | 0.006616 / 0.004328 (0.002288) | 0.106256 / 0.004250 (0.102005) | 0.048995 / 0.037052 (0.011942) | 0.450056 / 0.258489 (0.191567) | 0.511027 / 0.293841 (0.217187) | 0.052928 / 0.128546 (-0.075618) | 0.020824 / 0.075646 (-0.054822) | 0.450105 / 0.419271 (0.030834) | 0.062729 / 0.043533 (0.019196) | 0.438887 / 0.255139 (0.183748) | 0.468732 / 0.283200 (0.185532) | 0.116101 / 0.141683 (-0.025582) | 1.909689 / 1.452155 (0.457534) | 2.042007 / 1.492716 (0.549291) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198265 / 0.018006 (0.180259) | 0.541799 / 0.000490 (0.541309) | 0.003938 / 0.000200 (0.003738) | 0.000116 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035933 / 0.037411 (-0.001478) | 0.130754 / 0.014526 (0.116229) | 0.146143 / 0.176557 (-0.030414) | 0.202042 / 0.737135 (-0.535094) | 0.155648 / 0.296338 (-0.140691) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.691123 / 0.215209 (0.475914) | 6.708370 / 2.077655 (4.630715) | 2.957120 / 1.504120 (1.453000) | 2.558350 / 1.541195 (1.017155) | 2.611271 / 1.468490 (1.142781) | 1.327355 / 4.584777 (-3.257422) | 5.755975 / 3.745712 (2.010263) | 3.295556 / 5.269862 (-1.974305) | 2.159831 / 4.565676 (-2.405845) | 0.161409 / 0.424275 (-0.262866) | 0.015470 / 0.007607 (0.007863) | 0.840611 / 0.226044 (0.614567) | 8.550064 / 2.268929 (6.281136) | 3.832013 / 55.444624 (-51.612612) | 3.032909 / 6.876477 (-3.843568) | 3.155651 / 2.142072 (1.013578) | 1.612486 / 4.805227 (-3.192741) | 0.273789 / 6.500664 (-6.226875) | 0.085618 / 0.075469 (0.010149) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.808376 / 1.841788 (-0.033412) | 18.267614 / 8.074308 (10.193306) | 21.047679 / 10.191392 (10.856286) | 0.259089 / 0.680424 (-0.421335) | 0.029211 / 0.534201 (-0.504990) | 0.556303 / 0.579283 (-0.022980) | 0.625264 / 0.434364 (0.190900) | 0.680814 / 0.540337 (0.140476) | 0.810146 / 1.386936 (-0.576790) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#20ea76c80e07acad78cf67198a4046a982feda21 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008779 / 0.011353 (-0.002574) | 0.004644 / 0.011008 (-0.006364) | 0.099814 / 0.038508 (0.061306) | 0.029830 / 0.023109 (0.006721) | 0.299159 / 0.275898 (0.023261) | 0.354815 / 0.323480 (0.031335) | 0.006968 / 0.007986 (-0.001018) | 0.003521 / 0.004328 (-0.000808) | 0.077687 / 0.004250 (0.073437) | 0.035019 / 0.037052 (-0.002034) | 0.309548 / 0.258489 (0.051059) | 0.345228 / 0.293841 (0.051387) | 0.033644 / 0.128546 (-0.094902) | 0.011564 / 0.075646 (-0.064083) | 0.321835 / 0.419271 (-0.097437) | 0.041798 / 0.043533 (-0.001735) | 0.298190 / 0.255139 (0.043051) | 0.328874 / 0.283200 (0.045674) | 0.088175 / 0.141683 (-0.053508) | 1.481755 / 1.452155 (0.029600) | 1.503085 / 1.492716 (0.010369) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.170930 / 0.018006 (0.152924) | 0.422155 / 0.000490 (0.421666) | 0.001708 / 0.000200 (0.001509) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022588 / 0.037411 (-0.014824) | 0.095775 / 0.014526 (0.081249) | 0.103939 / 0.176557 (-0.072618) | 0.138441 / 0.737135 (-0.598694) | 0.107896 / 0.296338 (-0.188442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418243 / 0.215209 (0.203034) | 4.171432 / 2.077655 (2.093777) | 1.906029 / 1.504120 (0.401909) | 1.698174 / 1.541195 (0.156979) | 1.748339 / 1.468490 (0.279849) | 0.691026 / 4.584777 (-3.893751) | 3.393354 / 3.745712 (-0.352358) | 2.722412 / 5.269862 (-2.547450) | 1.462439 / 4.565676 (-3.103238) | 0.084713 / 0.424275 (-0.339562) | 0.012131 / 0.007607 (0.004524) | 0.522153 / 0.226044 (0.296109) | 5.197916 / 2.268929 (2.928988) | 2.314270 / 55.444624 (-53.130354) | 1.986599 / 6.876477 (-4.889878) | 2.012757 / 2.142072 (-0.129315) | 0.802540 / 4.805227 (-4.002687) | 0.148673 / 6.500664 (-6.351991) | 0.065924 / 0.075469 (-0.009545) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263790 / 1.841788 (-0.577998) | 13.874784 / 8.074308 (5.800476) | 13.842276 / 10.191392 (3.650884) | 0.149002 / 0.680424 (-0.531422) | 0.028550 / 0.534201 (-0.505651) | 0.396913 / 0.579283 (-0.182370) | 0.401543 / 0.434364 (-0.032821) | 0.473754 / 0.540337 (-0.066583) | 0.560455 / 1.386936 (-0.826481) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006724 / 0.011353 (-0.004629) | 0.004507 / 0.011008 (-0.006502) | 0.098447 / 0.038508 (0.059939) | 0.027888 / 0.023109 (0.004779) | 0.428956 / 0.275898 (0.153058) | 0.451557 / 0.323480 (0.128077) | 0.005056 / 0.007986 (-0.002929) | 0.003363 / 0.004328 (-0.000965) | 0.075990 / 0.004250 (0.071740) | 0.038688 / 0.037052 (0.001635) | 0.421550 / 0.258489 (0.163061) | 0.459480 / 0.293841 (0.165639) | 0.031408 / 0.128546 (-0.097138) | 0.011559 / 0.075646 (-0.064088) | 0.320054 / 0.419271 (-0.099217) | 0.041917 / 0.043533 (-0.001616) | 0.420878 / 0.255139 (0.165739) | 0.444813 / 0.283200 (0.161613) | 0.090409 / 0.141683 (-0.051274) | 1.490058 / 1.452155 (0.037904) | 1.645206 / 1.492716 (0.152489) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221105 / 0.018006 (0.203099) | 0.407537 / 0.000490 (0.407047) | 0.000410 / 0.000200 (0.000210) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024658 / 0.037411 (-0.012754) | 0.099230 / 0.014526 (0.084705) | 0.107788 / 0.176557 (-0.068769) | 0.143040 / 0.737135 (-0.594096) | 0.109440 / 0.296338 (-0.186899) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453303 / 0.215209 (0.238094) | 4.520376 / 2.077655 (2.442722) | 2.133909 / 1.504120 (0.629789) | 1.926996 / 1.541195 (0.385801) | 2.019870 / 1.468490 (0.551380) | 0.707423 / 4.584777 (-3.877354) | 3.391903 / 3.745712 (-0.353809) | 1.860661 / 5.269862 (-3.409201) | 1.159940 / 4.565676 (-3.405736) | 0.083773 / 0.424275 (-0.340502) | 0.012228 / 0.007607 (0.004621) | 0.554666 / 0.226044 (0.328622) | 5.567564 / 2.268929 (3.298636) | 2.636718 / 55.444624 (-52.807907) | 2.240215 / 6.876477 (-4.636262) | 2.218951 / 2.142072 (0.076879) | 0.817167 / 4.805227 (-3.988060) | 0.151633 / 6.500664 (-6.349032) | 0.066515 / 0.075469 (-0.008954) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.296665 / 1.841788 (-0.545123) | 13.997898 / 8.074308 (5.923590) | 13.286607 / 10.191392 (3.095215) | 0.148906 / 0.680424 (-0.531518) | 0.016600 / 0.534201 (-0.517601) | 0.377459 / 0.579283 (-0.201824) | 0.379938 / 0.434364 (-0.054426) | 0.461628 / 0.540337 (-0.078709) | 0.550592 / 1.386936 (-0.836344) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#053f51a3e2adb762236eb29dd02791307f45f02f \"CML watermark\")\n" ]
2023-01-27T11:26:38
2023-01-27T12:06:51
2023-01-27T11:57:48
since sqlalchemy update to 2.0.0 the CI started to fail: https://github.com/huggingface/datasets/actions/runs/4023742457/jobs/6914976514 the error comes from pandas: https://github.com/pandas-dev/pandas/issues/51015
lhoestq
https://github.com/huggingface/datasets/pull/5476
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5476", "html_url": "https://github.com/huggingface/datasets/pull/5476", "diff_url": "https://github.com/huggingface/datasets/pull/5476.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5476.patch", "merged_at": "2023-01-27T11:57:48" }
true
1,559,030,149
5,475
Dataset scan time is much slower than using native arrow
closed
[ "Hi ! In your code you only iterate on the Arrow buffers - you don't actually load the data as python objects. For a fair comparison, you can modify your code using:\r\n```diff\r\n- for _ in range(0, len(table), bsz):\r\n- _ = {k:table[k][_ : _ + bsz] for k in cols}\r\n+ for _ in range(0, len(table), bsz):\r\n+ _ = {k:table[k][_ : _ + bsz].to_pylist() for k in cols}\r\n```\r\n\r\nI re-ran your code and got a speed ratio of 1.00x and 1.02x", "Ah I see, datasets is implicitly making this conversion. Thanks for pointing that out!\r\n\r\nIf it's not too much, I would also suggest updating some of your docs with the same `.to_pylist()` conversion in the code snippet that follows [here](https://huggingface.co/course/chapter5/4?fw=pt#:~:text=let%E2%80%99s%20run%20a%20little%20speed%20test%20by%20iterating%20over%20all%20the%20elements%20in%20the%20PubMed%20Abstracts%20dataset%3A).", "This code snippet shows `datasets` code that reads the Arrow data as python objects already, there is no need to add to_pylist. Or were you thinking about something else ?" ]
2023-01-27T01:32:25
2023-01-30T16:17:11
2023-01-30T16:17:11
### Describe the bug I'm basically running the same scanning experiment from the tutorials https://huggingface.co/course/chapter5/4?fw=pt except now I'm comparing to a native pyarrow version. I'm finding that the native pyarrow approach is much faster (2 orders of magnitude). Is there something I'm missing that explains this phenomenon? ### Steps to reproduce the bug https://colab.research.google.com/drive/11EtHDaGAf1DKCpvYnAPJUW-LFfAcDzHY?usp=sharing ### Expected behavior I expect scan times to be on par with using pyarrow directly. ### Environment info standard colab environment
jonny-cyberhaven
https://github.com/huggingface/datasets/issues/5475
null
false
1,558,827,155
5,474
Column project operation on `datasets.Dataset`
closed
[ "Hi ! This would be a nice addition indeed :) This sounds like a duplicate of https://github.com/huggingface/datasets/issues/5468\r\n\r\n> Not sure. Some of my PRs are still open and some do not have any discussions.\r\n\r\nSorry to hear that, feel free to ping me on those PRs" ]
2023-01-26T21:47:53
2023-02-13T09:59:37
2023-02-13T09:59:37
### Feature request There is no operation to select a subset of columns of original dataset. Expected API follows. ```python a = Dataset.from_dict({ 'int': [0, 1, 2] 'char': ['a', 'b', 'c'], 'none': [None] * 3, }) b = a.project('int', 'char') # usually, .select() print(a.column_names) # stdout: ['int', 'char', 'none'] print(b.column_names) # stdout: ['int', 'char'] ``` Method project can easily accept not only column names (as a `str)` but univariant function applied to corresponding column as an example. Or keyword arguments can be used in order to rename columns in advance (see `pandas`, `pyspark`, `pyarrow`, and SQL).. ### Motivation Projection is a typical operation in every data processing library. And it is a basic block of a well-known data manipulation language like SQL. Without this operation `datasets.Dataset` interface is not complete. ### Your contribution Not sure. Some of my PRs are still open and some do not have any discussions.
daskol
https://github.com/huggingface/datasets/issues/5474
null
false
1,558,668,197
5,473
Set dev version
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008959 / 0.011353 (-0.002394) | 0.004549 / 0.011008 (-0.006460) | 0.102012 / 0.038508 (0.063504) | 0.030122 / 0.023109 (0.007013) | 0.303731 / 0.275898 (0.027833) | 0.344418 / 0.323480 (0.020938) | 0.007199 / 0.007986 (-0.000787) | 0.003415 / 0.004328 (-0.000913) | 0.079784 / 0.004250 (0.075534) | 0.034894 / 0.037052 (-0.002158) | 0.304739 / 0.258489 (0.046250) | 0.359457 / 0.293841 (0.065616) | 0.034194 / 0.128546 (-0.094352) | 0.011348 / 0.075646 (-0.064298) | 0.324340 / 0.419271 (-0.094931) | 0.041071 / 0.043533 (-0.002461) | 0.304437 / 0.255139 (0.049298) | 0.335517 / 0.283200 (0.052317) | 0.087787 / 0.141683 (-0.053895) | 1.467293 / 1.452155 (0.015138) | 1.543529 / 1.492716 (0.050813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187654 / 0.018006 (0.169648) | 0.426558 / 0.000490 (0.426068) | 0.003585 / 0.000200 (0.003385) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023410 / 0.037411 (-0.014001) | 0.097065 / 0.014526 (0.082539) | 0.105358 / 0.176557 (-0.071198) | 0.140941 / 0.737135 (-0.596195) | 0.109484 / 0.296338 (-0.186855) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420334 / 0.215209 (0.205125) | 4.223235 / 2.077655 (2.145581) | 1.866213 / 1.504120 (0.362093) | 1.673829 / 1.541195 (0.132634) | 1.757828 / 1.468490 (0.289337) | 0.702203 / 4.584777 (-3.882574) | 3.426192 / 3.745712 (-0.319521) | 1.950392 / 5.269862 (-3.319470) | 1.286139 / 4.565676 (-3.279538) | 0.082858 / 0.424275 (-0.341417) | 0.012587 / 0.007607 (0.004980) | 0.531920 / 0.226044 (0.305876) | 5.344425 / 2.268929 (3.075497) | 2.337875 / 55.444624 (-53.106749) | 1.967713 / 6.876477 (-4.908764) | 2.022075 / 2.142072 (-0.119997) | 0.829267 / 4.805227 (-3.975961) | 0.151712 / 6.500664 (-6.348952) | 0.066617 / 0.075469 (-0.008852) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251867 / 1.841788 (-0.589921) | 13.861756 / 8.074308 (5.787448) | 14.236309 / 10.191392 (4.044917) | 0.138215 / 0.680424 (-0.542209) | 0.028600 / 0.534201 (-0.505601) | 0.395890 / 0.579283 (-0.183393) | 0.403971 / 0.434364 (-0.030393) | 0.479033 / 0.540337 (-0.061305) | 0.564019 / 1.386936 (-0.822917) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006845 / 0.011353 (-0.004508) | 0.004544 / 0.011008 (-0.006464) | 0.098719 / 0.038508 (0.060211) | 0.029082 / 0.023109 (0.005973) | 0.426011 / 0.275898 (0.150113) | 0.447185 / 0.323480 (0.123705) | 0.005203 / 0.007986 (-0.002783) | 0.004790 / 0.004328 (0.000462) | 0.076446 / 0.004250 (0.072196) | 0.040649 / 0.037052 (0.003596) | 0.414810 / 0.258489 (0.156321) | 0.452082 / 0.293841 (0.158241) | 0.031842 / 0.128546 (-0.096704) | 0.011575 / 0.075646 (-0.064071) | 0.320710 / 0.419271 (-0.098561) | 0.044994 / 0.043533 (0.001461) | 0.415645 / 0.255139 (0.160506) | 0.435235 / 0.283200 (0.152035) | 0.091756 / 0.141683 (-0.049927) | 1.493900 / 1.452155 (0.041746) | 1.592353 / 1.492716 (0.099637) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264710 / 0.018006 (0.246703) | 0.410553 / 0.000490 (0.410064) | 0.024497 / 0.000200 (0.024297) | 0.000232 / 0.000054 (0.000178) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024452 / 0.037411 (-0.012959) | 0.102673 / 0.014526 (0.088147) | 0.107787 / 0.176557 (-0.068770) | 0.147368 / 0.737135 (-0.589767) | 0.112127 / 0.296338 (-0.184211) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471294 / 0.215209 (0.256085) | 4.711638 / 2.077655 (2.633983) | 2.436819 / 1.504120 (0.932699) | 2.238540 / 1.541195 (0.697345) | 2.334134 / 1.468490 (0.865644) | 0.697668 / 4.584777 (-3.887108) | 3.414332 / 3.745712 (-0.331380) | 2.783248 / 5.269862 (-2.486614) | 1.529599 / 4.565676 (-3.036078) | 0.082626 / 0.424275 (-0.341649) | 0.012385 / 0.007607 (0.004778) | 0.580486 / 0.226044 (0.354441) | 5.837914 / 2.268929 (3.568986) | 2.915129 / 55.444624 (-52.529495) | 2.606254 / 6.876477 (-4.270223) | 2.659031 / 2.142072 (0.516958) | 0.810431 / 4.805227 (-3.994796) | 0.151666 / 6.500664 (-6.348998) | 0.066873 / 0.075469 (-0.008596) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259933 / 1.841788 (-0.581855) | 14.052388 / 8.074308 (5.978080) | 13.356141 / 10.191392 (3.164749) | 0.138416 / 0.680424 (-0.542008) | 0.016582 / 0.534201 (-0.517619) | 0.378110 / 0.579283 (-0.201173) | 0.385089 / 0.434364 (-0.049275) | 0.465299 / 0.540337 (-0.075038) | 0.559780 / 1.386936 (-0.827156) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d2859fd4d4beca33f21539a6e1df9a7f012cbd10 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011945 / 0.011353 (0.000592) | 0.006128 / 0.011008 (-0.004880) | 0.128926 / 0.038508 (0.090418) | 0.037708 / 0.023109 (0.014599) | 0.373449 / 0.275898 (0.097551) | 0.423567 / 0.323480 (0.100088) | 0.009848 / 0.007986 (0.001863) | 0.006097 / 0.004328 (0.001769) | 0.098275 / 0.004250 (0.094024) | 0.043199 / 0.037052 (0.006147) | 0.376848 / 0.258489 (0.118359) | 0.441819 / 0.293841 (0.147978) | 0.055094 / 0.128546 (-0.073453) | 0.019704 / 0.075646 (-0.055942) | 0.422746 / 0.419271 (0.003474) | 0.061764 / 0.043533 (0.018231) | 0.381056 / 0.255139 (0.125917) | 0.419343 / 0.283200 (0.136144) | 0.116720 / 0.141683 (-0.024963) | 1.763913 / 1.452155 (0.311759) | 1.872306 / 1.492716 (0.379589) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198651 / 0.018006 (0.180645) | 0.560565 / 0.000490 (0.560075) | 0.004269 / 0.000200 (0.004069) | 0.000114 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027307 / 0.037411 (-0.010104) | 0.128276 / 0.014526 (0.113750) | 0.129015 / 0.176557 (-0.047542) | 0.167269 / 0.737135 (-0.569866) | 0.143955 / 0.296338 (-0.152384) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.564954 / 0.215209 (0.349745) | 5.810570 / 2.077655 (3.732916) | 2.456382 / 1.504120 (0.952262) | 2.115809 / 1.541195 (0.574614) | 2.097363 / 1.468490 (0.628873) | 1.189712 / 4.584777 (-3.395065) | 5.318287 / 3.745712 (1.572575) | 2.965763 / 5.269862 (-2.304099) | 2.177958 / 4.565676 (-2.387719) | 0.144135 / 0.424275 (-0.280140) | 0.014348 / 0.007607 (0.006741) | 0.781715 / 0.226044 (0.555670) | 7.688349 / 2.268929 (5.419421) | 3.189260 / 55.444624 (-52.255365) | 2.552340 / 6.876477 (-4.324137) | 2.559312 / 2.142072 (0.417240) | 1.490755 / 4.805227 (-3.314473) | 0.257908 / 6.500664 (-6.242756) | 0.082016 / 0.075469 (0.006547) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.565735 / 1.841788 (-0.276053) | 17.660338 / 8.074308 (9.586030) | 19.493573 / 10.191392 (9.302181) | 0.241310 / 0.680424 (-0.439114) | 0.043485 / 0.534201 (-0.490716) | 0.557397 / 0.579283 (-0.021886) | 0.624385 / 0.434364 (0.190021) | 0.634601 / 0.540337 (0.094264) | 0.743140 / 1.386936 (-0.643796) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010134 / 0.011353 (-0.001219) | 0.005858 / 0.011008 (-0.005150) | 0.128741 / 0.038508 (0.090232) | 0.036769 / 0.023109 (0.013660) | 0.470894 / 0.275898 (0.194996) | 0.524302 / 0.323480 (0.200822) | 0.006830 / 0.007986 (-0.001156) | 0.006166 / 0.004328 (0.001838) | 0.094875 / 0.004250 (0.090625) | 0.051201 / 0.037052 (0.014148) | 0.493992 / 0.258489 (0.235503) | 0.510540 / 0.293841 (0.216699) | 0.056354 / 0.128546 (-0.072192) | 0.020512 / 0.075646 (-0.055134) | 0.417809 / 0.419271 (-0.001463) | 0.061941 / 0.043533 (0.018408) | 0.498883 / 0.255139 (0.243744) | 0.480762 / 0.283200 (0.197563) | 0.110753 / 0.141683 (-0.030930) | 1.914096 / 1.452155 (0.461941) | 1.941338 / 1.492716 (0.448622) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237955 / 0.018006 (0.219949) | 0.518136 / 0.000490 (0.517647) | 0.000475 / 0.000200 (0.000275) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032947 / 0.037411 (-0.004465) | 0.127857 / 0.014526 (0.113331) | 0.133911 / 0.176557 (-0.042646) | 0.188406 / 0.737135 (-0.548729) | 0.143939 / 0.296338 (-0.152400) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.787553 / 0.215209 (0.572344) | 6.976572 / 2.077655 (4.898918) | 2.897964 / 1.504120 (1.393844) | 2.545906 / 1.541195 (1.004711) | 2.622111 / 1.468490 (1.153620) | 1.278283 / 4.584777 (-3.306494) | 5.650447 / 3.745712 (1.904734) | 4.955835 / 5.269862 (-0.314027) | 2.767946 / 4.565676 (-1.797731) | 0.149385 / 0.424275 (-0.274890) | 0.014340 / 0.007607 (0.006733) | 0.861774 / 0.226044 (0.635730) | 8.660985 / 2.268929 (6.392057) | 3.685611 / 55.444624 (-51.759014) | 2.963087 / 6.876477 (-3.913390) | 3.020746 / 2.142072 (0.878673) | 1.538908 / 4.805227 (-3.266319) | 0.285875 / 6.500664 (-6.214789) | 0.080337 / 0.075469 (0.004867) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.575155 / 1.841788 (-0.266633) | 17.548946 / 8.074308 (9.474638) | 19.954104 / 10.191392 (9.762712) | 0.242025 / 0.680424 (-0.438398) | 0.025586 / 0.534201 (-0.508615) | 0.515676 / 0.579283 (-0.063607) | 0.607035 / 0.434364 (0.172671) | 0.633597 / 0.540337 (0.093259) | 0.744577 / 1.386936 (-0.642359) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6529cada7879496bf18dd686e4d281de81d6203c \"CML watermark\")\n" ]
2023-01-26T19:34:44
2023-01-26T19:47:34
2023-01-26T19:38:30
null
lhoestq
https://github.com/huggingface/datasets/pull/5473
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5473", "html_url": "https://github.com/huggingface/datasets/pull/5473", "diff_url": "https://github.com/huggingface/datasets/pull/5473.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5473.patch", "merged_at": "2023-01-26T19:38:30" }
true
1,558,662,251
5,472
Release: 2.9.0
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008578 / 0.011353 (-0.002775) | 0.004535 / 0.011008 (-0.006473) | 0.100694 / 0.038508 (0.062186) | 0.029570 / 0.023109 (0.006460) | 0.296384 / 0.275898 (0.020486) | 0.354405 / 0.323480 (0.030925) | 0.006962 / 0.007986 (-0.001024) | 0.003405 / 0.004328 (-0.000924) | 0.077275 / 0.004250 (0.073025) | 0.036623 / 0.037052 (-0.000429) | 0.309844 / 0.258489 (0.051355) | 0.340343 / 0.293841 (0.046502) | 0.033626 / 0.128546 (-0.094920) | 0.011433 / 0.075646 (-0.064214) | 0.322659 / 0.419271 (-0.096612) | 0.040509 / 0.043533 (-0.003024) | 0.294002 / 0.255139 (0.038863) | 0.323259 / 0.283200 (0.040059) | 0.088023 / 0.141683 (-0.053660) | 1.462039 / 1.452155 (0.009885) | 1.495401 / 1.492716 (0.002684) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218614 / 0.018006 (0.200608) | 0.482359 / 0.000490 (0.481869) | 0.001216 / 0.000200 (0.001016) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023167 / 0.037411 (-0.014245) | 0.098468 / 0.014526 (0.083942) | 0.108273 / 0.176557 (-0.068284) | 0.139991 / 0.737135 (-0.597144) | 0.109032 / 0.296338 (-0.187307) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421526 / 0.215209 (0.206317) | 4.216808 / 2.077655 (2.139153) | 1.860550 / 1.504120 (0.356431) | 1.654518 / 1.541195 (0.113323) | 1.699064 / 1.468490 (0.230574) | 0.691489 / 4.584777 (-3.893287) | 3.401885 / 3.745712 (-0.343827) | 2.792860 / 5.269862 (-2.477001) | 1.516269 / 4.565676 (-3.049408) | 0.081627 / 0.424275 (-0.342648) | 0.012556 / 0.007607 (0.004949) | 0.531535 / 0.226044 (0.305491) | 5.320752 / 2.268929 (3.051823) | 2.314502 / 55.444624 (-53.130123) | 1.967118 / 6.876477 (-4.909359) | 2.008252 / 2.142072 (-0.133821) | 0.809730 / 4.805227 (-3.995497) | 0.148112 / 6.500664 (-6.352552) | 0.064821 / 0.075469 (-0.010648) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269754 / 1.841788 (-0.572033) | 13.884200 / 8.074308 (5.809892) | 13.914390 / 10.191392 (3.722998) | 0.150176 / 0.680424 (-0.530248) | 0.028463 / 0.534201 (-0.505738) | 0.398723 / 0.579283 (-0.180561) | 0.400433 / 0.434364 (-0.033931) | 0.485169 / 0.540337 (-0.055169) | 0.565995 / 1.386936 (-0.820941) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006479 / 0.011353 (-0.004874) | 0.004504 / 0.011008 (-0.006504) | 0.097905 / 0.038508 (0.059397) | 0.027140 / 0.023109 (0.004031) | 0.408742 / 0.275898 (0.132844) | 0.448707 / 0.323480 (0.125228) | 0.004819 / 0.007986 (-0.003166) | 0.004761 / 0.004328 (0.000433) | 0.075456 / 0.004250 (0.071205) | 0.036282 / 0.037052 (-0.000771) | 0.405961 / 0.258489 (0.147472) | 0.449411 / 0.293841 (0.155570) | 0.031159 / 0.128546 (-0.097387) | 0.011693 / 0.075646 (-0.063954) | 0.321124 / 0.419271 (-0.098147) | 0.041369 / 0.043533 (-0.002164) | 0.408070 / 0.255139 (0.152931) | 0.428704 / 0.283200 (0.145504) | 0.086839 / 0.141683 (-0.054844) | 1.477772 / 1.452155 (0.025617) | 1.555913 / 1.492716 (0.063197) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239494 / 0.018006 (0.221488) | 0.410785 / 0.000490 (0.410295) | 0.000989 / 0.000200 (0.000789) | 0.000072 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023805 / 0.037411 (-0.013607) | 0.097904 / 0.014526 (0.083378) | 0.106437 / 0.176557 (-0.070120) | 0.140555 / 0.737135 (-0.596580) | 0.107169 / 0.296338 (-0.189170) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470233 / 0.215209 (0.255024) | 4.700451 / 2.077655 (2.622797) | 2.391712 / 1.504120 (0.887592) | 2.191125 / 1.541195 (0.649930) | 2.268924 / 1.468490 (0.800434) | 0.692421 / 4.584777 (-3.892356) | 3.387117 / 3.745712 (-0.358595) | 1.881731 / 5.269862 (-3.388130) | 1.155759 / 4.565676 (-3.409917) | 0.082040 / 0.424275 (-0.342236) | 0.012687 / 0.007607 (0.005080) | 0.567556 / 0.226044 (0.341511) | 5.701408 / 2.268929 (3.432480) | 2.864368 / 55.444624 (-52.580256) | 2.512073 / 6.876477 (-4.364404) | 2.546078 / 2.142072 (0.404005) | 0.795939 / 4.805227 (-4.009288) | 0.150078 / 6.500664 (-6.350586) | 0.067644 / 0.075469 (-0.007825) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281681 / 1.841788 (-0.560107) | 13.967107 / 8.074308 (5.892799) | 13.293648 / 10.191392 (3.102256) | 0.128027 / 0.680424 (-0.552397) | 0.016791 / 0.534201 (-0.517410) | 0.379400 / 0.579283 (-0.199884) | 0.386847 / 0.434364 (-0.047517) | 0.469859 / 0.540337 (-0.070478) | 0.564203 / 1.386936 (-0.822733) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90832b5e33774ea8ec35ccb92ac14649a345bdbe \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008701 / 0.011353 (-0.002652) | 0.004564 / 0.011008 (-0.006444) | 0.100578 / 0.038508 (0.062070) | 0.029209 / 0.023109 (0.006100) | 0.315308 / 0.275898 (0.039410) | 0.381022 / 0.323480 (0.057542) | 0.007152 / 0.007986 (-0.000834) | 0.003511 / 0.004328 (-0.000817) | 0.078361 / 0.004250 (0.074110) | 0.035394 / 0.037052 (-0.001658) | 0.331076 / 0.258489 (0.072586) | 0.366613 / 0.293841 (0.072772) | 0.033466 / 0.128546 (-0.095080) | 0.011521 / 0.075646 (-0.064126) | 0.322178 / 0.419271 (-0.097093) | 0.040891 / 0.043533 (-0.002641) | 0.320418 / 0.255139 (0.065279) | 0.345199 / 0.283200 (0.062000) | 0.087906 / 0.141683 (-0.053777) | 1.476801 / 1.452155 (0.024646) | 1.497738 / 1.492716 (0.005022) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178094 / 0.018006 (0.160087) | 0.408317 / 0.000490 (0.407827) | 0.001825 / 0.000200 (0.001625) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022402 / 0.037411 (-0.015010) | 0.097104 / 0.014526 (0.082578) | 0.105361 / 0.176557 (-0.071196) | 0.139728 / 0.737135 (-0.597407) | 0.109613 / 0.296338 (-0.186725) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418245 / 0.215209 (0.203036) | 4.155655 / 2.077655 (2.078000) | 1.865892 / 1.504120 (0.361772) | 1.659003 / 1.541195 (0.117809) | 1.725649 / 1.468490 (0.257159) | 0.688733 / 4.584777 (-3.896044) | 3.323529 / 3.745712 (-0.422184) | 1.867807 / 5.269862 (-3.402054) | 1.157740 / 4.565676 (-3.407936) | 0.081947 / 0.424275 (-0.342329) | 0.012471 / 0.007607 (0.004864) | 0.529333 / 0.226044 (0.303288) | 5.284898 / 2.268929 (3.015970) | 2.321741 / 55.444624 (-53.122883) | 1.975683 / 6.876477 (-4.900794) | 2.029691 / 2.142072 (-0.112381) | 0.810212 / 4.805227 (-3.995015) | 0.148185 / 6.500664 (-6.352479) | 0.064594 / 0.075469 (-0.010875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.183391 / 1.841788 (-0.658396) | 13.574760 / 8.074308 (5.500452) | 14.215015 / 10.191392 (4.023623) | 0.150776 / 0.680424 (-0.529648) | 0.029058 / 0.534201 (-0.505143) | 0.404071 / 0.579283 (-0.175212) | 0.401289 / 0.434364 (-0.033075) | 0.490946 / 0.540337 (-0.049392) | 0.582292 / 1.386936 (-0.804644) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006695 / 0.011353 (-0.004658) | 0.004499 / 0.011008 (-0.006510) | 0.097633 / 0.038508 (0.059125) | 0.027606 / 0.023109 (0.004496) | 0.413191 / 0.275898 (0.137293) | 0.441896 / 0.323480 (0.118416) | 0.005703 / 0.007986 (-0.002283) | 0.004608 / 0.004328 (0.000280) | 0.074392 / 0.004250 (0.070141) | 0.037966 / 0.037052 (0.000913) | 0.410736 / 0.258489 (0.152247) | 0.448581 / 0.293841 (0.154740) | 0.031594 / 0.128546 (-0.096952) | 0.011597 / 0.075646 (-0.064049) | 0.319632 / 0.419271 (-0.099639) | 0.041189 / 0.043533 (-0.002343) | 0.407120 / 0.255139 (0.151981) | 0.433416 / 0.283200 (0.150216) | 0.089932 / 0.141683 (-0.051751) | 1.453919 / 1.452155 (0.001764) | 1.545892 / 1.492716 (0.053176) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224302 / 0.018006 (0.206296) | 0.415519 / 0.000490 (0.415029) | 0.000407 / 0.000200 (0.000207) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024104 / 0.037411 (-0.013307) | 0.098202 / 0.014526 (0.083676) | 0.106416 / 0.176557 (-0.070140) | 0.141090 / 0.737135 (-0.596045) | 0.110188 / 0.296338 (-0.186150) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478252 / 0.215209 (0.263043) | 4.739684 / 2.077655 (2.662029) | 2.419040 / 1.504120 (0.914920) | 2.217705 / 1.541195 (0.676510) | 2.303288 / 1.468490 (0.834798) | 0.696682 / 4.584777 (-3.888095) | 3.401962 / 3.745712 (-0.343750) | 1.886015 / 5.269862 (-3.383846) | 1.175084 / 4.565676 (-3.390592) | 0.083064 / 0.424275 (-0.341211) | 0.012613 / 0.007607 (0.005006) | 0.579105 / 0.226044 (0.353060) | 5.792119 / 2.268929 (3.523191) | 2.889778 / 55.444624 (-52.554846) | 2.537438 / 6.876477 (-4.339039) | 2.574814 / 2.142072 (0.432741) | 0.803438 / 4.805227 (-4.001789) | 0.151912 / 6.500664 (-6.348752) | 0.068291 / 0.075469 (-0.007178) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286002 / 1.841788 (-0.555786) | 14.179443 / 8.074308 (6.105135) | 13.443939 / 10.191392 (3.252547) | 0.152427 / 0.680424 (-0.527996) | 0.017248 / 0.534201 (-0.516953) | 0.378734 / 0.579283 (-0.200549) | 0.382276 / 0.434364 (-0.052087) | 0.465323 / 0.540337 (-0.075014) | 0.556454 / 1.386936 (-0.830482) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b5672a956d5de864e6f5550e493527d962d6ae55 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008675 / 0.011353 (-0.002678) | 0.004537 / 0.011008 (-0.006471) | 0.100179 / 0.038508 (0.061671) | 0.029307 / 0.023109 (0.006198) | 0.294687 / 0.275898 (0.018789) | 0.356868 / 0.323480 (0.033388) | 0.006992 / 0.007986 (-0.000994) | 0.003380 / 0.004328 (-0.000949) | 0.076961 / 0.004250 (0.072710) | 0.036047 / 0.037052 (-0.001005) | 0.308037 / 0.258489 (0.049548) | 0.341089 / 0.293841 (0.047248) | 0.033416 / 0.128546 (-0.095131) | 0.011534 / 0.075646 (-0.064112) | 0.322976 / 0.419271 (-0.096296) | 0.040894 / 0.043533 (-0.002639) | 0.296501 / 0.255139 (0.041362) | 0.324605 / 0.283200 (0.041405) | 0.086713 / 0.141683 (-0.054970) | 1.502784 / 1.452155 (0.050630) | 1.535013 / 1.492716 (0.042297) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186647 / 0.018006 (0.168641) | 0.411003 / 0.000490 (0.410514) | 0.003594 / 0.000200 (0.003394) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023704 / 0.037411 (-0.013707) | 0.096154 / 0.014526 (0.081629) | 0.103671 / 0.176557 (-0.072885) | 0.138878 / 0.737135 (-0.598258) | 0.106947 / 0.296338 (-0.189391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417180 / 0.215209 (0.201970) | 4.149579 / 2.077655 (2.071925) | 1.865763 / 1.504120 (0.361643) | 1.669722 / 1.541195 (0.128527) | 1.722345 / 1.468490 (0.253855) | 0.695910 / 4.584777 (-3.888867) | 3.342266 / 3.745712 (-0.403446) | 1.884568 / 5.269862 (-3.385294) | 1.265013 / 4.565676 (-3.300664) | 0.081836 / 0.424275 (-0.342439) | 0.012371 / 0.007607 (0.004764) | 0.522997 / 0.226044 (0.296953) | 5.225434 / 2.268929 (2.956506) | 2.304701 / 55.444624 (-53.139924) | 1.949067 / 6.876477 (-4.927410) | 2.016347 / 2.142072 (-0.125725) | 0.809850 / 4.805227 (-3.995377) | 0.148396 / 6.500664 (-6.352268) | 0.063340 / 0.075469 (-0.012129) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224621 / 1.841788 (-0.617167) | 13.814223 / 8.074308 (5.739915) | 13.879728 / 10.191392 (3.688336) | 0.149530 / 0.680424 (-0.530894) | 0.028439 / 0.534201 (-0.505762) | 0.392726 / 0.579283 (-0.186557) | 0.396894 / 0.434364 (-0.037469) | 0.474395 / 0.540337 (-0.065943) | 0.569090 / 1.386936 (-0.817847) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006483 / 0.011353 (-0.004870) | 0.004527 / 0.011008 (-0.006481) | 0.098038 / 0.038508 (0.059530) | 0.027239 / 0.023109 (0.004130) | 0.441773 / 0.275898 (0.165875) | 0.471448 / 0.323480 (0.147968) | 0.005034 / 0.007986 (-0.002951) | 0.004732 / 0.004328 (0.000403) | 0.075036 / 0.004250 (0.070785) | 0.036711 / 0.037052 (-0.000341) | 0.442634 / 0.258489 (0.184145) | 0.476479 / 0.293841 (0.182638) | 0.031303 / 0.128546 (-0.097243) | 0.011642 / 0.075646 (-0.064005) | 0.320750 / 0.419271 (-0.098521) | 0.048698 / 0.043533 (0.005165) | 0.441205 / 0.255139 (0.186066) | 0.464845 / 0.283200 (0.181645) | 0.092716 / 0.141683 (-0.048967) | 1.510028 / 1.452155 (0.057874) | 1.574065 / 1.492716 (0.081349) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220756 / 0.018006 (0.202750) | 0.393971 / 0.000490 (0.393482) | 0.002506 / 0.000200 (0.002306) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024455 / 0.037411 (-0.012956) | 0.100164 / 0.014526 (0.085638) | 0.108053 / 0.176557 (-0.068504) | 0.142973 / 0.737135 (-0.594163) | 0.110108 / 0.296338 (-0.186231) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473639 / 0.215209 (0.258430) | 4.737521 / 2.077655 (2.659866) | 2.466208 / 1.504120 (0.962088) | 2.272608 / 1.541195 (0.731413) | 2.349255 / 1.468490 (0.880764) | 0.699928 / 4.584777 (-3.884849) | 3.348443 / 3.745712 (-0.397269) | 2.604611 / 5.269862 (-2.665250) | 1.543080 / 4.565676 (-3.022597) | 0.082627 / 0.424275 (-0.341648) | 0.012251 / 0.007607 (0.004644) | 0.569949 / 0.226044 (0.343905) | 5.732316 / 2.268929 (3.463388) | 2.913541 / 55.444624 (-52.531084) | 2.560584 / 6.876477 (-4.315892) | 2.615192 / 2.142072 (0.473120) | 0.803822 / 4.805227 (-4.001406) | 0.150821 / 6.500664 (-6.349843) | 0.067128 / 0.075469 (-0.008341) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272278 / 1.841788 (-0.569510) | 13.783339 / 8.074308 (5.709030) | 13.243601 / 10.191392 (3.052209) | 0.136421 / 0.680424 (-0.544003) | 0.016565 / 0.534201 (-0.517636) | 0.381102 / 0.579283 (-0.198181) | 0.386166 / 0.434364 (-0.048197) | 0.474249 / 0.540337 (-0.066089) | 0.566826 / 1.386936 (-0.820110) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b5672a956d5de864e6f5550e493527d962d6ae55 \"CML watermark\")\n" ]
2023-01-26T19:29:42
2023-01-26T19:40:44
2023-01-26T19:33:00
null
lhoestq
https://github.com/huggingface/datasets/pull/5472
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5472", "html_url": "https://github.com/huggingface/datasets/pull/5472", "diff_url": "https://github.com/huggingface/datasets/pull/5472.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5472.patch", "merged_at": "2023-01-26T19:33:00" }
true
1,558,557,545
5,471
Add num_test_batches option
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "I thought this issue was resolved in my parallel `to_tf_dataset` PR! I changed the default `num_test_batches` in `_get_output_signature` to 20 and used a test batch size of 1 to maximize variance to detect shorter samples. I think it's still okay to have this PR, though - but I'd use the new value of 20 as the default!", "@Rocketknight1 You're right - I didn't have the most recent changes to the default values. Updated now to 20! I still think it would be good to have it configurable from the `to_tf_dataset` call so the user has the option to either make it more robust if many samples are needed, or faster if only one is needed. That, and I selfishly want it for faster tests. ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010441 / 0.011353 (-0.000912) | 0.005605 / 0.011008 (-0.005404) | 0.115712 / 0.038508 (0.077204) | 0.040907 / 0.023109 (0.017797) | 0.357673 / 0.275898 (0.081775) | 0.415427 / 0.323480 (0.091947) | 0.008827 / 0.007986 (0.000842) | 0.006069 / 0.004328 (0.001740) | 0.088985 / 0.004250 (0.084735) | 0.048461 / 0.037052 (0.011409) | 0.362065 / 0.258489 (0.103576) | 0.393643 / 0.293841 (0.099802) | 0.043844 / 0.128546 (-0.084703) | 0.013757 / 0.075646 (-0.061889) | 0.390993 / 0.419271 (-0.028278) | 0.053612 / 0.043533 (0.010079) | 0.348688 / 0.255139 (0.093549) | 0.377818 / 0.283200 (0.094619) | 0.115762 / 0.141683 (-0.025920) | 1.751826 / 1.452155 (0.299672) | 1.773326 / 1.492716 (0.280609) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220668 / 0.018006 (0.202662) | 0.536830 / 0.000490 (0.536340) | 0.000467 / 0.000200 (0.000267) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031500 / 0.037411 (-0.005911) | 0.125796 / 0.014526 (0.111270) | 0.137539 / 0.176557 (-0.039017) | 0.184651 / 0.737135 (-0.552484) | 0.145707 / 0.296338 (-0.150632) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465876 / 0.215209 (0.250667) | 4.637711 / 2.077655 (2.560056) | 2.132335 / 1.504120 (0.628215) | 1.862593 / 1.541195 (0.321398) | 1.961701 / 1.468490 (0.493211) | 0.800551 / 4.584777 (-3.784226) | 4.453321 / 3.745712 (0.707608) | 4.291030 / 5.269862 (-0.978832) | 2.256685 / 4.565676 (-2.308991) | 0.097787 / 0.424275 (-0.326488) | 0.014116 / 0.007607 (0.006509) | 0.593395 / 0.226044 (0.367351) | 5.885774 / 2.268929 (3.616845) | 2.666224 / 55.444624 (-52.778400) | 2.276673 / 6.876477 (-4.599803) | 2.358190 / 2.142072 (0.216117) | 0.981398 / 4.805227 (-3.823829) | 0.196997 / 6.500664 (-6.303668) | 0.077020 / 0.075469 (0.001550) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365646 / 1.841788 (-0.476142) | 17.418157 / 8.074308 (9.343849) | 15.838749 / 10.191392 (5.647357) | 0.172749 / 0.680424 (-0.507675) | 0.033711 / 0.534201 (-0.500490) | 0.513306 / 0.579283 (-0.065978) | 0.503201 / 0.434364 (0.068837) | 0.608954 / 0.540337 (0.068616) | 0.734697 / 1.386936 (-0.652239) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008749 / 0.011353 (-0.002604) | 0.005738 / 0.011008 (-0.005270) | 0.084946 / 0.038508 (0.046438) | 0.040386 / 0.023109 (0.017277) | 0.398698 / 0.275898 (0.122800) | 0.435843 / 0.323480 (0.112363) | 0.006812 / 0.007986 (-0.001174) | 0.004567 / 0.004328 (0.000239) | 0.085857 / 0.004250 (0.081607) | 0.054791 / 0.037052 (0.017738) | 0.400381 / 0.258489 (0.141892) | 0.460313 / 0.293841 (0.166472) | 0.042299 / 0.128546 (-0.086247) | 0.014128 / 0.075646 (-0.061519) | 0.100497 / 0.419271 (-0.318775) | 0.058356 / 0.043533 (0.014823) | 0.399774 / 0.255139 (0.144635) | 0.428210 / 0.283200 (0.145011) | 0.122084 / 0.141683 (-0.019598) | 1.683519 / 1.452155 (0.231365) | 1.798024 / 1.492716 (0.305307) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255058 / 0.018006 (0.237051) | 0.488831 / 0.000490 (0.488342) | 0.008349 / 0.000200 (0.008149) | 0.000183 / 0.000054 (0.000129) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034870 / 0.037411 (-0.002541) | 0.131818 / 0.014526 (0.117292) | 0.143607 / 0.176557 (-0.032949) | 0.197413 / 0.737135 (-0.539722) | 0.148970 / 0.296338 (-0.147368) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.492831 / 0.215209 (0.277622) | 4.963085 / 2.077655 (2.885430) | 2.367803 / 1.504120 (0.863683) | 2.145535 / 1.541195 (0.604340) | 2.289452 / 1.468490 (0.820962) | 0.812691 / 4.584777 (-3.772086) | 4.554068 / 3.745712 (0.808356) | 2.377126 / 5.269862 (-2.892735) | 1.537243 / 4.565676 (-3.028433) | 0.099742 / 0.424275 (-0.324534) | 0.014757 / 0.007607 (0.007149) | 0.628714 / 0.226044 (0.402670) | 6.240197 / 2.268929 (3.971268) | 2.961929 / 55.444624 (-52.482696) | 2.533436 / 6.876477 (-4.343040) | 2.642619 / 2.142072 (0.500547) | 0.976002 / 4.805227 (-3.829225) | 0.197912 / 6.500664 (-6.302752) | 0.078767 / 0.075469 (0.003297) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.522863 / 1.841788 (-0.318925) | 18.210504 / 8.074308 (10.136196) | 15.664172 / 10.191392 (5.472780) | 0.178510 / 0.680424 (-0.501914) | 0.020852 / 0.534201 (-0.513349) | 0.501757 / 0.579283 (-0.077526) | 0.496542 / 0.434364 (0.062178) | 0.624958 / 0.540337 (0.084620) | 0.746960 / 1.386936 (-0.639976) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#da7f09ed65411c5941de45c372a8aa8d5e55b431 \"CML watermark\")\n" ]
2023-01-26T18:09:40
2023-01-27T18:16:45
2023-01-27T18:08:36
`to_tf_dataset` calls can be very costly because of the number of test batches drawn during `_get_output_signature`. The test batches are draw in order to estimate the shapes when creating the tensorflow dataset. This is necessary when the shapes can be irregular, but not in cases when the tensor shapes are the same across all samples. This PR adds an option to change the number of batches drawn, so the user can speed this conversion up. Running the following, and modifying `num_test_batches` ``` import time from datasets import load_dataset from transformers import DefaultDataCollator data_collator = DefaultDataCollator() dataset = load_dataset("beans") dataset = dataset["train"].with_format("np") start = time.time() dataset = dataset.to_tf_dataset( columns=["image"], label_cols=["label"], batch_size=8, collate_fn=data_collator, num_test_batches=NUM_TEST_BATCHES, ) end = time.time() print(end - start) ``` NUM_TEST_BATCHES=200: 0.8197s NUM_TEST_BATCHES=50: 0.3070s NUM_TEST_BATCHES=2: 0.1417s NUM_TEST_BATCHES=1: 0.1352s
amyeroberts
https://github.com/huggingface/datasets/pull/5471
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5471", "html_url": "https://github.com/huggingface/datasets/pull/5471", "diff_url": "https://github.com/huggingface/datasets/pull/5471.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5471.patch", "merged_at": "2023-01-27T18:08:36" }
true
1,558,542,611
5,470
Update dataset card creation
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "The CI failure is unrelated to your PR - feel free to merge :)", "Haha thanks, you read my mind :)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008332 / 0.011353 (-0.003021) | 0.004556 / 0.011008 (-0.006452) | 0.102239 / 0.038508 (0.063731) | 0.029332 / 0.023109 (0.006222) | 0.296189 / 0.275898 (0.020291) | 0.355746 / 0.323480 (0.032266) | 0.007705 / 0.007986 (-0.000281) | 0.003488 / 0.004328 (-0.000840) | 0.079142 / 0.004250 (0.074891) | 0.034980 / 0.037052 (-0.002073) | 0.307460 / 0.258489 (0.048971) | 0.345944 / 0.293841 (0.052103) | 0.033815 / 0.128546 (-0.094731) | 0.011603 / 0.075646 (-0.064044) | 0.322097 / 0.419271 (-0.097175) | 0.043753 / 0.043533 (0.000220) | 0.296706 / 0.255139 (0.041567) | 0.323195 / 0.283200 (0.039996) | 0.092295 / 0.141683 (-0.049388) | 1.542556 / 1.452155 (0.090401) | 1.571896 / 1.492716 (0.079180) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191075 / 0.018006 (0.173069) | 0.407394 / 0.000490 (0.406905) | 0.002033 / 0.000200 (0.001833) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023175 / 0.037411 (-0.014236) | 0.094774 / 0.014526 (0.080248) | 0.105782 / 0.176557 (-0.070775) | 0.146608 / 0.737135 (-0.590528) | 0.107519 / 0.296338 (-0.188819) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421516 / 0.215209 (0.206306) | 4.201091 / 2.077655 (2.123436) | 1.880285 / 1.504120 (0.376165) | 1.676333 / 1.541195 (0.135139) | 1.734301 / 1.468490 (0.265811) | 0.688504 / 4.584777 (-3.896273) | 3.370289 / 3.745712 (-0.375423) | 3.127661 / 5.269862 (-2.142201) | 1.562570 / 4.565676 (-3.003106) | 0.081687 / 0.424275 (-0.342588) | 0.012334 / 0.007607 (0.004727) | 0.524125 / 0.226044 (0.298080) | 5.245595 / 2.268929 (2.976667) | 2.332622 / 55.444624 (-53.112002) | 1.973212 / 6.876477 (-4.903265) | 2.006507 / 2.142072 (-0.135565) | 0.807126 / 4.805227 (-3.998101) | 0.148254 / 6.500664 (-6.352411) | 0.064240 / 0.075469 (-0.011229) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206880 / 1.841788 (-0.634907) | 13.854877 / 8.074308 (5.780569) | 13.806772 / 10.191392 (3.615380) | 0.144380 / 0.680424 (-0.536044) | 0.028492 / 0.534201 (-0.505709) | 0.393854 / 0.579283 (-0.185429) | 0.402210 / 0.434364 (-0.032154) | 0.462138 / 0.540337 (-0.078199) | 0.537480 / 1.386936 (-0.849456) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006692 / 0.011353 (-0.004661) | 0.004529 / 0.011008 (-0.006479) | 0.077925 / 0.038508 (0.039417) | 0.027824 / 0.023109 (0.004715) | 0.342288 / 0.275898 (0.066390) | 0.375071 / 0.323480 (0.051591) | 0.004889 / 0.007986 (-0.003097) | 0.003353 / 0.004328 (-0.000975) | 0.076198 / 0.004250 (0.071947) | 0.037797 / 0.037052 (0.000744) | 0.347834 / 0.258489 (0.089345) | 0.384200 / 0.293841 (0.090359) | 0.032184 / 0.128546 (-0.096362) | 0.011674 / 0.075646 (-0.063972) | 0.086242 / 0.419271 (-0.333029) | 0.044465 / 0.043533 (0.000932) | 0.341712 / 0.255139 (0.086573) | 0.366908 / 0.283200 (0.083709) | 0.091526 / 0.141683 (-0.050156) | 1.495798 / 1.452155 (0.043643) | 1.571700 / 1.492716 (0.078984) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221962 / 0.018006 (0.203955) | 0.393095 / 0.000490 (0.392605) | 0.000385 / 0.000200 (0.000185) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024365 / 0.037411 (-0.013046) | 0.099278 / 0.014526 (0.084753) | 0.105940 / 0.176557 (-0.070617) | 0.141334 / 0.737135 (-0.595802) | 0.110898 / 0.296338 (-0.185440) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.446150 / 0.215209 (0.230941) | 4.471441 / 2.077655 (2.393786) | 2.124864 / 1.504120 (0.620744) | 1.909950 / 1.541195 (0.368755) | 1.970085 / 1.468490 (0.501595) | 0.706711 / 4.584777 (-3.878066) | 3.380336 / 3.745712 (-0.365376) | 1.866106 / 5.269862 (-3.403756) | 1.160657 / 4.565676 (-3.405019) | 0.082786 / 0.424275 (-0.341489) | 0.012470 / 0.007607 (0.004862) | 0.537620 / 0.226044 (0.311575) | 5.390588 / 2.268929 (3.121659) | 2.539137 / 55.444624 (-52.905488) | 2.191867 / 6.876477 (-4.684610) | 2.236212 / 2.142072 (0.094139) | 0.810756 / 4.805227 (-3.994471) | 0.150933 / 6.500664 (-6.349731) | 0.066141 / 0.075469 (-0.009328) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.271595 / 1.841788 (-0.570193) | 13.840013 / 8.074308 (5.765705) | 13.334443 / 10.191392 (3.143051) | 0.150096 / 0.680424 (-0.530328) | 0.016919 / 0.534201 (-0.517282) | 0.375534 / 0.579283 (-0.203749) | 0.387203 / 0.434364 (-0.047161) | 0.463500 / 0.540337 (-0.076838) | 0.553496 / 1.386936 (-0.833440) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f2e47230c13f977bcebdc4380623f59da67a75f \"CML watermark\")\n" ]
2023-01-26T17:57:51
2023-01-27T16:27:00
2023-01-27T16:20:10
Encourages users to create a dataset card on the Hub directly with the new metadata ui + import dataset card template instead of telling users to manually create and upload one.
stevhliu
https://github.com/huggingface/datasets/pull/5470
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5470", "html_url": "https://github.com/huggingface/datasets/pull/5470", "diff_url": "https://github.com/huggingface/datasets/pull/5470.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5470.patch", "merged_at": "2023-01-27T16:20:10" }
true
1,558,346,906
5,469
Remove deprecated `shard_size` arg from `.push_to_hub()`
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008272 / 0.011353 (-0.003081) | 0.004494 / 0.011008 (-0.006515) | 0.100764 / 0.038508 (0.062256) | 0.028741 / 0.023109 (0.005632) | 0.309020 / 0.275898 (0.033122) | 0.354184 / 0.323480 (0.030704) | 0.007455 / 0.007986 (-0.000531) | 0.003377 / 0.004328 (-0.000951) | 0.078472 / 0.004250 (0.074222) | 0.034719 / 0.037052 (-0.002333) | 0.312787 / 0.258489 (0.054298) | 0.342878 / 0.293841 (0.049037) | 0.033326 / 0.128546 (-0.095221) | 0.011519 / 0.075646 (-0.064127) | 0.323556 / 0.419271 (-0.095716) | 0.039929 / 0.043533 (-0.003604) | 0.304627 / 0.255139 (0.049488) | 0.322876 / 0.283200 (0.039677) | 0.086410 / 0.141683 (-0.055273) | 1.502607 / 1.452155 (0.050453) | 1.577953 / 1.492716 (0.085237) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192861 / 0.018006 (0.174855) | 0.406008 / 0.000490 (0.405519) | 0.001075 / 0.000200 (0.000875) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023351 / 0.037411 (-0.014060) | 0.096086 / 0.014526 (0.081561) | 0.104641 / 0.176557 (-0.071915) | 0.141940 / 0.737135 (-0.595195) | 0.109266 / 0.296338 (-0.187073) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416496 / 0.215209 (0.201287) | 4.161581 / 2.077655 (2.083926) | 1.815357 / 1.504120 (0.311238) | 1.609536 / 1.541195 (0.068341) | 1.654105 / 1.468490 (0.185615) | 0.693947 / 4.584777 (-3.890830) | 3.349029 / 3.745712 (-0.396683) | 1.883968 / 5.269862 (-3.385893) | 1.287988 / 4.565676 (-3.277688) | 0.081765 / 0.424275 (-0.342511) | 0.012373 / 0.007607 (0.004766) | 0.517186 / 0.226044 (0.291142) | 5.200892 / 2.268929 (2.931964) | 2.247414 / 55.444624 (-53.197211) | 1.910601 / 6.876477 (-4.965876) | 1.965407 / 2.142072 (-0.176666) | 0.814386 / 4.805227 (-3.990841) | 0.149295 / 6.500664 (-6.351369) | 0.064667 / 0.075469 (-0.010802) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.247258 / 1.841788 (-0.594530) | 13.837355 / 8.074308 (5.763047) | 13.850454 / 10.191392 (3.659062) | 0.136078 / 0.680424 (-0.544346) | 0.028322 / 0.534201 (-0.505878) | 0.391394 / 0.579283 (-0.187889) | 0.407494 / 0.434364 (-0.026870) | 0.473784 / 0.540337 (-0.066554) | 0.562953 / 1.386936 (-0.823983) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006559 / 0.011353 (-0.004794) | 0.004546 / 0.011008 (-0.006462) | 0.099527 / 0.038508 (0.061019) | 0.027428 / 0.023109 (0.004319) | 0.344276 / 0.275898 (0.068377) | 0.377897 / 0.323480 (0.054417) | 0.004913 / 0.007986 (-0.003072) | 0.003338 / 0.004328 (-0.000990) | 0.077589 / 0.004250 (0.073339) | 0.038819 / 0.037052 (0.001766) | 0.343165 / 0.258489 (0.084676) | 0.386228 / 0.293841 (0.092387) | 0.031753 / 0.128546 (-0.096794) | 0.011756 / 0.075646 (-0.063890) | 0.322537 / 0.419271 (-0.096735) | 0.049865 / 0.043533 (0.006332) | 0.340493 / 0.255139 (0.085354) | 0.372179 / 0.283200 (0.088980) | 0.099669 / 0.141683 (-0.042013) | 1.487841 / 1.452155 (0.035686) | 1.527400 / 1.492716 (0.034683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.180782 / 0.018006 (0.162776) | 0.393494 / 0.000490 (0.393004) | 0.003004 / 0.000200 (0.002804) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024997 / 0.037411 (-0.012415) | 0.098232 / 0.014526 (0.083707) | 0.107869 / 0.176557 (-0.068688) | 0.141042 / 0.737135 (-0.596093) | 0.109551 / 0.296338 (-0.186787) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477115 / 0.215209 (0.261906) | 4.783928 / 2.077655 (2.706273) | 2.435725 / 1.504120 (0.931605) | 2.233111 / 1.541195 (0.691916) | 2.341097 / 1.468490 (0.872607) | 0.694304 / 4.584777 (-3.890473) | 3.345687 / 3.745712 (-0.400025) | 1.886932 / 5.269862 (-3.382929) | 1.155585 / 4.565676 (-3.410092) | 0.082867 / 0.424275 (-0.341408) | 0.012420 / 0.007607 (0.004813) | 0.576575 / 0.226044 (0.350530) | 5.777691 / 2.268929 (3.508762) | 2.882219 / 55.444624 (-52.562405) | 2.543613 / 6.876477 (-4.332864) | 2.578939 / 2.142072 (0.436866) | 0.803143 / 4.805227 (-4.002084) | 0.151929 / 6.500664 (-6.348735) | 0.067777 / 0.075469 (-0.007693) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.282711 / 1.841788 (-0.559077) | 13.942771 / 8.074308 (5.868463) | 13.376206 / 10.191392 (3.184814) | 0.152916 / 0.680424 (-0.527508) | 0.016619 / 0.534201 (-0.517582) | 0.375141 / 0.579283 (-0.204142) | 0.381660 / 0.434364 (-0.052704) | 0.465090 / 0.540337 (-0.075247) | 0.555068 / 1.386936 (-0.831868) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#10a6a638e0feb955f7b607b4433ee715c30acccf \"CML watermark\")\n" ]
2023-01-26T15:40:56
2023-01-26T17:37:51
2023-01-26T17:30:59
The docstrings say that it was supposed to be deprecated since version 2.4.0, can we remove it?
polinaeterna
https://github.com/huggingface/datasets/pull/5469
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5469", "html_url": "https://github.com/huggingface/datasets/pull/5469", "diff_url": "https://github.com/huggingface/datasets/pull/5469.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5469.patch", "merged_at": "2023-01-26T17:30:59" }
true
1,558,066,625
5,468
Allow opposite of remove_columns on Dataset and DatasetDict
closed
[ "Hi! I agree it would be nice to have a method like that. Instead of `keep_columns`, we can name it `select_columns` to be more aligned with PyArrow's naming convention (`pa.Table.select`).", "Hi, I am a newbie to open source and would like to contribute. @mariosasko can I take up this issue ?", "Hey, I also want to work on this issue I am a newbie to open source. ", "This sounds related to https://github.com/huggingface/datasets/issues/5474\r\n\r\nI'm fine with `select_columns`, or we could also override `select` to also accept a list of columns maybe ?", "@lhoestq, I am planning to add a member function to the dataset class to perform the selection operation. Do you think its the right way to proceed? or there is a better option ?", "Unless @mariosasko thinks otherwise, I think it can go in `Dataset.select()` :)\r\nThough some parameters like keep_in_memory, indices_cache_file_name or writer_batch_size wouldn't when selecting columns, so we would need to update the docstring as well", "If someone wants to give it a shot, feel free to comment `#self-assign` and it will assign the issue to you.\r\n\r\nFeel free to ping us here if you have questions or if we can help :)", "I would rather have this functionality as a separate method. IMO it's always better to be explicit than to have an API where a single method can do different/uncorrelated things (somewhat reminds me of Pandas, and there is probably a good reason why PyArrow is more rigid in this aspect).", "In the end I also think it would be nice to have it as a separate method, this way we can also have it for `IterableDataset` (which can't have `select` for indices)" ]
2023-01-26T12:28:09
2023-02-13T09:59:38
2023-02-13T09:59:38
### Feature request In this blog post https://huggingface.co/blog/audio-datasets, I noticed the following code: ```python COLUMNS_TO_KEEP = ["text", "audio"] all_columns = gigaspeech["train"].column_names columns_to_remove = set(all_columns) - set(COLUMNS_TO_KEEP) gigaspeech = gigaspeech.remove_columns(columns_to_remove) ``` This kind of thing happens a lot when you don't need to keep all columns from the dataset. It would be more convenient (and less error prone) if you could just write: ```python gigaspeech = gigaspeech.keep_columns(["text", "audio"]) ``` Internally, `keep_columns` could still call `remove_columns`, but it expresses more clearly what the user's intent is. ### Motivation Less code to write for the user of the dataset. ### Your contribution -
hollance
https://github.com/huggingface/datasets/issues/5468
null
false
1,557,898,273
5,467
Fix conda command in readme
closed
[ "ah didn't read well - it's all good", "or maybe it isn't ? `-c huggingface -c conda-forge` installs from HF or from conda-forge ?", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010196 / 0.011353 (-0.001157) | 0.005531 / 0.011008 (-0.005477) | 0.104601 / 0.038508 (0.066093) | 0.041322 / 0.023109 (0.018213) | 0.302080 / 0.275898 (0.026182) | 0.396579 / 0.323480 (0.073099) | 0.008874 / 0.007986 (0.000888) | 0.004482 / 0.004328 (0.000153) | 0.077487 / 0.004250 (0.073236) | 0.051113 / 0.037052 (0.014061) | 0.321850 / 0.258489 (0.063361) | 0.354946 / 0.293841 (0.061105) | 0.039822 / 0.128546 (-0.088724) | 0.012622 / 0.075646 (-0.063024) | 0.337898 / 0.419271 (-0.081374) | 0.048372 / 0.043533 (0.004839) | 0.299646 / 0.255139 (0.044507) | 0.321113 / 0.283200 (0.037914) | 0.114780 / 0.141683 (-0.026903) | 1.475750 / 1.452155 (0.023595) | 1.496307 / 1.492716 (0.003590) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.311443 / 0.018006 (0.293437) | 0.567268 / 0.000490 (0.566778) | 0.006149 / 0.000200 (0.005950) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029407 / 0.037411 (-0.008004) | 0.118611 / 0.014526 (0.104085) | 0.122247 / 0.176557 (-0.054309) | 0.164770 / 0.737135 (-0.572365) | 0.128561 / 0.296338 (-0.167778) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399185 / 0.215209 (0.183976) | 3.972995 / 2.077655 (1.895340) | 1.764638 / 1.504120 (0.260518) | 1.574058 / 1.541195 (0.032863) | 1.741695 / 1.468490 (0.273205) | 0.705664 / 4.584777 (-3.879113) | 3.915399 / 3.745712 (0.169686) | 2.310154 / 5.269862 (-2.959707) | 1.554067 / 4.565676 (-3.011610) | 0.087133 / 0.424275 (-0.337142) | 0.012393 / 0.007607 (0.004786) | 0.510758 / 0.226044 (0.284713) | 5.114906 / 2.268929 (2.845977) | 2.304473 / 55.444624 (-53.140152) | 1.960768 / 6.876477 (-4.915709) | 2.092263 / 2.142072 (-0.049810) | 0.867973 / 4.805227 (-3.937255) | 0.170000 / 6.500664 (-6.330664) | 0.068358 / 0.075469 (-0.007111) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.211022 / 1.841788 (-0.630765) | 16.777269 / 8.074308 (8.702961) | 15.272659 / 10.191392 (5.081267) | 0.182149 / 0.680424 (-0.498274) | 0.029577 / 0.534201 (-0.504624) | 0.446590 / 0.579283 (-0.132693) | 0.454724 / 0.434364 (0.020360) | 0.541938 / 0.540337 (0.001601) | 0.640886 / 1.386936 (-0.746050) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008441 / 0.011353 (-0.002912) | 0.006105 / 0.011008 (-0.004904) | 0.100349 / 0.038508 (0.061841) | 0.040675 / 0.023109 (0.017565) | 0.381775 / 0.275898 (0.105877) | 0.425246 / 0.323480 (0.101767) | 0.007197 / 0.007986 (-0.000789) | 0.004972 / 0.004328 (0.000644) | 0.075346 / 0.004250 (0.071096) | 0.065339 / 0.037052 (0.028286) | 0.379340 / 0.258489 (0.120851) | 0.435646 / 0.293841 (0.141805) | 0.038891 / 0.128546 (-0.089656) | 0.013079 / 0.075646 (-0.062568) | 0.339273 / 0.419271 (-0.079999) | 0.057478 / 0.043533 (0.013945) | 0.373516 / 0.255139 (0.118377) | 0.402388 / 0.283200 (0.119189) | 0.123145 / 0.141683 (-0.018538) | 1.503765 / 1.452155 (0.051610) | 1.609797 / 1.492716 (0.117081) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.420354 / 0.018006 (0.402348) | 0.589272 / 0.000490 (0.588782) | 0.045861 / 0.000200 (0.045662) | 0.000527 / 0.000054 (0.000473) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033918 / 0.037411 (-0.003493) | 0.128041 / 0.014526 (0.113515) | 0.130274 / 0.176557 (-0.046283) | 0.180605 / 0.737135 (-0.556530) | 0.136377 / 0.296338 (-0.159962) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440343 / 0.215209 (0.225133) | 4.390264 / 2.077655 (2.312610) | 2.218738 / 1.504120 (0.714618) | 2.052399 / 1.541195 (0.511204) | 2.231912 / 1.468490 (0.763422) | 0.716805 / 4.584777 (-3.867972) | 3.909277 / 3.745712 (0.163565) | 2.302121 / 5.269862 (-2.967740) | 1.419454 / 4.565676 (-3.146222) | 0.088067 / 0.424275 (-0.336208) | 0.012994 / 0.007607 (0.005387) | 0.548267 / 0.226044 (0.322223) | 5.462973 / 2.268929 (3.194044) | 2.768414 / 55.444624 (-52.676210) | 2.489320 / 6.876477 (-4.387157) | 2.569546 / 2.142072 (0.427474) | 0.853135 / 4.805227 (-3.952092) | 0.170618 / 6.500664 (-6.330046) | 0.069908 / 0.075469 (-0.005562) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.304726 / 1.841788 (-0.537062) | 17.335977 / 8.074308 (9.261669) | 15.088319 / 10.191392 (4.896927) | 0.190893 / 0.680424 (-0.489531) | 0.018133 / 0.534201 (-0.516068) | 0.429324 / 0.579283 (-0.149959) | 0.439212 / 0.434364 (0.004848) | 0.545312 / 0.540337 (0.004975) | 0.663972 / 1.386936 (-0.722964) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e7505adc37498f5e0cb3dd4c13bbb06696afdda5 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._" ]
2023-01-26T10:03:01
2023-09-24T10:06:59
2023-01-26T18:29:37
The [conda forge channel](https://anaconda.org/conda-forge/datasets) is lagging behind (as of right now, only 2.7.1 is available), we should recommend using the [Hugging face channel](https://anaconda.org/HuggingFace/datasets) that we are maintaining ``` conda install -c huggingface datasets ```
lhoestq
https://github.com/huggingface/datasets/pull/5467
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5467", "html_url": "https://github.com/huggingface/datasets/pull/5467", "diff_url": "https://github.com/huggingface/datasets/pull/5467.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5467.patch", "merged_at": null }
true
1,557,584,845
5,466
remove pathlib.Path with URIs
closed
[ "Thanks !\r\n`os.path.join` will use a backslash `\\` on windows which will also fail. You can use this instead in `load_from_disk`:\r\n```python\r\nfrom .filesystems import is_remote_filesystem\r\n\r\nis_local = not is_remote_filesystem(fs)\r\npath_join = os.path.join if is_local else posixpath.join\r\n```", "Thank you ! I did a minor change to not have to define a new function and I ran the CI. If it's green we can merge :)", "_The documentation is not available anymore as the PR was closed or merged._", "> \r\n\r\n\r\n\r\n> Thank you ! I did a minor change to not have to define a new function and I ran the CI. If it's green we can merge :)\r\n\r\nlol it's a battle of +1 imports or +1 functions. LGTM, I was editing fast and swapped which branch gets os vs Path. Should be ok now ๐Ÿค™", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012043 / 0.011353 (0.000690) | 0.006585 / 0.011008 (-0.004423) | 0.149007 / 0.038508 (0.110499) | 0.039514 / 0.023109 (0.016405) | 0.403893 / 0.275898 (0.127995) | 0.431252 / 0.323480 (0.107772) | 0.009218 / 0.007986 (0.001233) | 0.006108 / 0.004328 (0.001779) | 0.114666 / 0.004250 (0.110416) | 0.044962 / 0.037052 (0.007910) | 0.411592 / 0.258489 (0.153103) | 0.461561 / 0.293841 (0.167721) | 0.059958 / 0.128546 (-0.068589) | 0.029047 / 0.075646 (-0.046599) | 0.456000 / 0.419271 (0.036728) | 0.060744 / 0.043533 (0.017211) | 0.415816 / 0.255139 (0.160677) | 0.430488 / 0.283200 (0.147289) | 0.122477 / 0.141683 (-0.019205) | 1.862910 / 1.452155 (0.410755) | 1.974698 / 1.492716 (0.481981) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257230 / 0.018006 (0.239224) | 0.606854 / 0.000490 (0.606364) | 0.006175 / 0.000200 (0.005975) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030533 / 0.037411 (-0.006879) | 0.130702 / 0.014526 (0.116177) | 0.143781 / 0.176557 (-0.032775) | 0.183272 / 0.737135 (-0.553863) | 0.151267 / 0.296338 (-0.145071) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.637422 / 0.215209 (0.422213) | 6.503535 / 2.077655 (4.425880) | 2.630387 / 1.504120 (1.126267) | 2.281180 / 1.541195 (0.739985) | 2.354341 / 1.468490 (0.885851) | 1.306497 / 4.584777 (-3.278280) | 5.837184 / 3.745712 (2.091472) | 3.257198 / 5.269862 (-2.012663) | 2.050681 / 4.565676 (-2.514995) | 0.146415 / 0.424275 (-0.277860) | 0.015386 / 0.007607 (0.007779) | 0.790146 / 0.226044 (0.564102) | 8.056137 / 2.268929 (5.787209) | 3.383566 / 55.444624 (-52.061059) | 2.707620 / 6.876477 (-4.168856) | 2.714857 / 2.142072 (0.572785) | 1.520847 / 4.805227 (-3.284380) | 0.266028 / 6.500664 (-6.234636) | 0.091422 / 0.075469 (0.015953) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.656148 / 1.841788 (-0.185640) | 18.833393 / 8.074308 (10.759085) | 21.360824 / 10.191392 (11.169432) | 0.227608 / 0.680424 (-0.452816) | 0.049018 / 0.534201 (-0.485183) | 0.593418 / 0.579283 (0.014135) | 0.656690 / 0.434364 (0.222326) | 0.709171 / 0.540337 (0.168833) | 0.828226 / 1.386936 (-0.558710) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010112 / 0.011353 (-0.001241) | 0.006761 / 0.011008 (-0.004247) | 0.146723 / 0.038508 (0.108215) | 0.038451 / 0.023109 (0.015342) | 0.524267 / 0.275898 (0.248369) | 0.609484 / 0.323480 (0.286004) | 0.008502 / 0.007986 (0.000516) | 0.006964 / 0.004328 (0.002635) | 0.111396 / 0.004250 (0.107146) | 0.056839 / 0.037052 (0.019787) | 0.514649 / 0.258489 (0.256160) | 0.604212 / 0.293841 (0.310372) | 0.061410 / 0.128546 (-0.067137) | 0.020396 / 0.075646 (-0.055250) | 0.505026 / 0.419271 (0.085754) | 0.067280 / 0.043533 (0.023747) | 0.522249 / 0.255139 (0.267110) | 0.559484 / 0.283200 (0.276284) | 0.120943 / 0.141683 (-0.020740) | 2.124323 / 1.452155 (0.672169) | 2.153397 / 1.492716 (0.660681) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216614 / 0.018006 (0.198608) | 0.594181 / 0.000490 (0.593692) | 0.004079 / 0.000200 (0.003879) | 0.000117 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036925 / 0.037411 (-0.000486) | 0.131322 / 0.014526 (0.116797) | 0.148542 / 0.176557 (-0.028015) | 0.196045 / 0.737135 (-0.541090) | 0.156867 / 0.296338 (-0.139472) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.669722 / 0.215209 (0.454513) | 6.858856 / 2.077655 (4.781202) | 3.093969 / 1.504120 (1.589849) | 2.667385 / 1.541195 (1.126190) | 2.797192 / 1.468490 (1.328702) | 1.334759 / 4.584777 (-3.250018) | 6.024861 / 3.745712 (2.279149) | 3.257779 / 5.269862 (-2.012083) | 2.202816 / 4.565676 (-2.362860) | 0.147617 / 0.424275 (-0.276658) | 0.015451 / 0.007607 (0.007844) | 0.887015 / 0.226044 (0.660970) | 8.371288 / 2.268929 (6.102360) | 3.807451 / 55.444624 (-51.637173) | 3.079483 / 6.876477 (-3.796994) | 3.103321 / 2.142072 (0.961249) | 1.520272 / 4.805227 (-3.284955) | 0.273079 / 6.500664 (-6.227585) | 0.088613 / 0.075469 (0.013143) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.818913 / 1.841788 (-0.022875) | 19.274269 / 8.074308 (11.199960) | 19.871784 / 10.191392 (9.680392) | 0.250388 / 0.680424 (-0.430036) | 0.030562 / 0.534201 (-0.503638) | 0.560566 / 0.579283 (-0.018717) | 0.664701 / 0.434364 (0.230337) | 0.714513 / 0.540337 (0.174176) | 0.827227 / 1.386936 (-0.559710) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f7a9bf823ea41b85313c0392388ec68b3033ef29 \"CML watermark\")\n" ]
2023-01-26T03:25:45
2023-01-26T17:08:57
2023-01-26T16:59:11
Pathlib will convert "//" to "/" which causes retry errors when downloading from cloud storage
jonny-cyberhaven
https://github.com/huggingface/datasets/pull/5466
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5466", "html_url": "https://github.com/huggingface/datasets/pull/5466", "diff_url": "https://github.com/huggingface/datasets/pull/5466.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5466.patch", "merged_at": "2023-01-26T16:59:11" }
true
1,557,510,618
5,465
audiofolder creates empty dataset even though the dataset passed in follows the correct structure
closed
[]
2023-01-26T01:45:45
2023-01-26T08:48:45
2023-01-26T08:48:45
### Describe the bug The structure of my dataset folder called "my_dataset" is : data metadata.csv The data folder consists of all mp3 files and metadata.csv consist of file locations like 'data/...mp3 and transcriptions. There's 400+ mp3 files and corresponding transcriptions for my dataset. When I run the following: ds = load_dataset("audiofolder", data_dir="my_dataset") I get: Using custom data configuration default-... Downloading and preparing dataset audiofolder/default to /... Downloading data files: 0%| | 0/2 [00:00<?, ?it/s] Downloading data files: 0it [00:00, ?it/s] Extracting data files: 0it [00:00, ?it/s] Generating train split: 0 examples [00:00, ? examples/s] Dataset audiofolder downloaded and prepared to /.... Subsequent calls will reuse this data. 0%| | 0/1 [00:00<?, ?it/s] DatasetDict({ train: Dataset({ features: ['audio', 'transcription'], num_rows: 1 }) }) ### Steps to reproduce the bug Create a dataset folder called 'my_dataset' with a subfolder called 'data' that has mp3 files. Also, create metadata.csv that has file locations like 'data/...mp3' and their corresponding transcription. Run: ds = load_dataset("audiofolder", data_dir="my_dataset") ### Expected behavior It should generate a dataset with numerous rows. ### Environment info Run on Jupyter notebook
jcho19
https://github.com/huggingface/datasets/issues/5465
null
false
1,557,462,104
5,464
NonMatchingChecksumError for hendrycks_test
closed
[ "Thanks for reporting, @sarahwie.\r\n\r\nPlease note this issue was already fixed in `datasets` 2.6.0 version:\r\n- #5040\r\n\r\nIf you update your `datasets` version, you will be able to load the dataset:\r\n```\r\npip install -U datasets\r\n```", "Oops, missed that I needed to upgrade. Thanks!" ]
2023-01-26T00:43:23
2023-01-27T05:44:31
2023-01-26T07:41:58
### Describe the bug The checksum of the file has likely changed on the remote host. ### Steps to reproduce the bug `dataset = nlp.load_dataset("hendrycks_test", "anatomy")` ### Expected behavior no error thrown ### Environment info - `datasets` version: 2.2.1 - Platform: macOS-13.1-arm64-arm-64bit - Python version: 3.9.13 - PyArrow version: 9.0.0 - Pandas version: 1.5.1
sarahwie
https://github.com/huggingface/datasets/issues/5464
null
false
1,557,021,041
5,463
Imagefolder docs: mention support of CSV and ZIP
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009559 / 0.011353 (-0.001794) | 0.006425 / 0.011008 (-0.004583) | 0.112951 / 0.038508 (0.074443) | 0.030835 / 0.023109 (0.007725) | 0.313846 / 0.275898 (0.037948) | 0.352780 / 0.323480 (0.029301) | 0.007740 / 0.007986 (-0.000246) | 0.006843 / 0.004328 (0.002515) | 0.082632 / 0.004250 (0.078382) | 0.039704 / 0.037052 (0.002652) | 0.328526 / 0.258489 (0.070037) | 0.369162 / 0.293841 (0.075321) | 0.047603 / 0.128546 (-0.080943) | 0.015834 / 0.075646 (-0.059812) | 0.385912 / 0.419271 (-0.033360) | 0.053838 / 0.043533 (0.010306) | 0.325778 / 0.255139 (0.070639) | 0.361863 / 0.283200 (0.078663) | 0.097388 / 0.141683 (-0.044295) | 1.510132 / 1.452155 (0.057978) | 1.555980 / 1.492716 (0.063264) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210792 / 0.018006 (0.192786) | 0.507270 / 0.000490 (0.506780) | 0.002383 / 0.000200 (0.002183) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023057 / 0.037411 (-0.014355) | 0.103471 / 0.014526 (0.088945) | 0.111671 / 0.176557 (-0.064885) | 0.145665 / 0.737135 (-0.591470) | 0.131447 / 0.296338 (-0.164891) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.502979 / 0.215209 (0.287770) | 5.111471 / 2.077655 (3.033816) | 2.093604 / 1.504120 (0.589484) | 1.761342 / 1.541195 (0.220148) | 1.919485 / 1.468490 (0.450995) | 1.065672 / 4.584777 (-3.519105) | 5.109746 / 3.745712 (1.364034) | 4.694027 / 5.269862 (-0.575835) | 2.438401 / 4.565676 (-2.127275) | 0.133579 / 0.424275 (-0.290696) | 0.012355 / 0.007607 (0.004748) | 0.669077 / 0.226044 (0.443033) | 6.533905 / 2.268929 (4.264976) | 2.698832 / 55.444624 (-52.745792) | 2.146377 / 6.876477 (-4.730100) | 2.220563 / 2.142072 (0.078491) | 1.287855 / 4.805227 (-3.517372) | 0.238221 / 6.500664 (-6.262443) | 0.071426 / 0.075469 (-0.004043) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.332659 / 1.841788 (-0.509129) | 15.610100 / 8.074308 (7.535791) | 16.691117 / 10.191392 (6.499725) | 0.226338 / 0.680424 (-0.454086) | 0.039964 / 0.534201 (-0.494237) | 0.462911 / 0.579283 (-0.116372) | 0.575923 / 0.434364 (0.141560) | 0.592583 / 0.540337 (0.052245) | 0.658552 / 1.386936 (-0.728384) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008388 / 0.011353 (-0.002965) | 0.005360 / 0.011008 (-0.005648) | 0.104574 / 0.038508 (0.066066) | 0.030109 / 0.023109 (0.007000) | 0.389294 / 0.275898 (0.113396) | 0.424813 / 0.323480 (0.101333) | 0.006629 / 0.007986 (-0.001356) | 0.005222 / 0.004328 (0.000893) | 0.080157 / 0.004250 (0.075907) | 0.045811 / 0.037052 (0.008759) | 0.398708 / 0.258489 (0.140219) | 0.429449 / 0.293841 (0.135608) | 0.052242 / 0.128546 (-0.076304) | 0.017439 / 0.075646 (-0.058207) | 0.362678 / 0.419271 (-0.056593) | 0.054151 / 0.043533 (0.010618) | 0.387932 / 0.255139 (0.132793) | 0.410544 / 0.283200 (0.127344) | 0.101210 / 0.141683 (-0.040473) | 1.486496 / 1.452155 (0.034341) | 1.576404 / 1.492716 (0.083687) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259468 / 0.018006 (0.241461) | 0.521661 / 0.000490 (0.521172) | 0.000456 / 0.000200 (0.000256) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027045 / 0.037411 (-0.010366) | 0.107615 / 0.014526 (0.093089) | 0.133228 / 0.176557 (-0.043329) | 0.156807 / 0.737135 (-0.580328) | 0.125226 / 0.296338 (-0.171113) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.528804 / 0.215209 (0.313595) | 5.516402 / 2.077655 (3.438748) | 2.387531 / 1.504120 (0.883412) | 2.084734 / 1.541195 (0.543539) | 2.091894 / 1.468490 (0.623404) | 1.089761 / 4.584777 (-3.495016) | 5.093067 / 3.745712 (1.347355) | 2.670349 / 5.269862 (-2.599512) | 1.784723 / 4.565676 (-2.780953) | 0.125528 / 0.424275 (-0.298747) | 0.013702 / 0.007607 (0.006095) | 0.667755 / 0.226044 (0.441710) | 6.653900 / 2.268929 (4.384972) | 3.006058 / 55.444624 (-52.438567) | 2.512919 / 6.876477 (-4.363558) | 2.546824 / 2.142072 (0.404751) | 1.269008 / 4.805227 (-3.536219) | 0.234388 / 6.500664 (-6.266276) | 0.065675 / 0.075469 (-0.009795) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.372222 / 1.841788 (-0.469566) | 15.565156 / 8.074308 (7.490848) | 16.800666 / 10.191392 (6.609274) | 0.220656 / 0.680424 (-0.459768) | 0.023690 / 0.534201 (-0.510511) | 0.450049 / 0.579283 (-0.129234) | 0.580433 / 0.434364 (0.146069) | 0.558899 / 0.540337 (0.018561) | 0.676799 / 1.386936 (-0.710137) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6cc5dcacecf41efc566385b323a3ca72ab44db36 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009440 / 0.011353 (-0.001913) | 0.005159 / 0.011008 (-0.005849) | 0.099152 / 0.038508 (0.060644) | 0.035939 / 0.023109 (0.012830) | 0.300968 / 0.275898 (0.025070) | 0.365676 / 0.323480 (0.042196) | 0.008220 / 0.007986 (0.000235) | 0.004071 / 0.004328 (-0.000257) | 0.075216 / 0.004250 (0.070965) | 0.042173 / 0.037052 (0.005121) | 0.315055 / 0.258489 (0.056566) | 0.338287 / 0.293841 (0.044446) | 0.037789 / 0.128546 (-0.090758) | 0.011856 / 0.075646 (-0.063791) | 0.332975 / 0.419271 (-0.086297) | 0.047087 / 0.043533 (0.003554) | 0.295107 / 0.255139 (0.039968) | 0.315416 / 0.283200 (0.032217) | 0.102273 / 0.141683 (-0.039410) | 1.464908 / 1.452155 (0.012754) | 1.500281 / 1.492716 (0.007565) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208522 / 0.018006 (0.190516) | 0.446576 / 0.000490 (0.446086) | 0.005766 / 0.000200 (0.005566) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027924 / 0.037411 (-0.009487) | 0.111296 / 0.014526 (0.096771) | 0.119055 / 0.176557 (-0.057502) | 0.157755 / 0.737135 (-0.579381) | 0.125539 / 0.296338 (-0.170799) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395683 / 0.215209 (0.180474) | 3.962696 / 2.077655 (1.885042) | 1.789511 / 1.504120 (0.285391) | 1.591541 / 1.541195 (0.050346) | 1.661276 / 1.468490 (0.192786) | 0.693524 / 4.584777 (-3.891253) | 3.836526 / 3.745712 (0.090813) | 2.187284 / 5.269862 (-3.082578) | 1.521420 / 4.565676 (-3.044257) | 0.084370 / 0.424275 (-0.339905) | 0.012083 / 0.007607 (0.004476) | 0.498017 / 0.226044 (0.271972) | 4.982356 / 2.268929 (2.713428) | 2.235881 / 55.444624 (-53.208743) | 1.912067 / 6.876477 (-4.964410) | 2.052172 / 2.142072 (-0.089900) | 0.836232 / 4.805227 (-3.968995) | 0.165234 / 6.500664 (-6.335431) | 0.062933 / 0.075469 (-0.012536) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197785 / 1.841788 (-0.644003) | 15.233655 / 8.074308 (7.159347) | 14.254450 / 10.191392 (4.063058) | 0.169149 / 0.680424 (-0.511274) | 0.028794 / 0.534201 (-0.505407) | 0.437214 / 0.579283 (-0.142069) | 0.434836 / 0.434364 (0.000472) | 0.531594 / 0.540337 (-0.008744) | 0.626266 / 1.386936 (-0.760670) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007394 / 0.011353 (-0.003959) | 0.005305 / 0.011008 (-0.005703) | 0.098888 / 0.038508 (0.060380) | 0.033069 / 0.023109 (0.009959) | 0.388427 / 0.275898 (0.112529) | 0.415216 / 0.323480 (0.091736) | 0.005610 / 0.007986 (-0.002375) | 0.004922 / 0.004328 (0.000593) | 0.073694 / 0.004250 (0.069443) | 0.047368 / 0.037052 (0.010315) | 0.379604 / 0.258489 (0.121115) | 0.424876 / 0.293841 (0.131035) | 0.039471 / 0.128546 (-0.089075) | 0.012219 / 0.075646 (-0.063427) | 0.345925 / 0.419271 (-0.073346) | 0.048981 / 0.043533 (0.005448) | 0.379303 / 0.255139 (0.124164) | 0.404682 / 0.283200 (0.121483) | 0.103932 / 0.141683 (-0.037751) | 1.490852 / 1.452155 (0.038697) | 1.578900 / 1.492716 (0.086183) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201393 / 0.018006 (0.183387) | 0.452484 / 0.000490 (0.451994) | 0.005627 / 0.000200 (0.005428) | 0.000129 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029317 / 0.037411 (-0.008094) | 0.114904 / 0.014526 (0.100378) | 0.126678 / 0.176557 (-0.049878) | 0.178315 / 0.737135 (-0.558820) | 0.131603 / 0.296338 (-0.164736) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459830 / 0.215209 (0.244621) | 4.595358 / 2.077655 (2.517703) | 2.383582 / 1.504120 (0.879462) | 2.181945 / 1.541195 (0.640750) | 2.309517 / 1.468490 (0.841027) | 0.704803 / 4.584777 (-3.879974) | 3.820411 / 3.745712 (0.074698) | 4.872173 / 5.269862 (-0.397689) | 2.266090 / 4.565676 (-2.299586) | 0.085805 / 0.424275 (-0.338470) | 0.012488 / 0.007607 (0.004881) | 0.557500 / 0.226044 (0.331456) | 5.570830 / 2.268929 (3.301901) | 2.836202 / 55.444624 (-52.608422) | 2.530534 / 6.876477 (-4.345943) | 2.599792 / 2.142072 (0.457720) | 0.843852 / 4.805227 (-3.961376) | 0.169427 / 6.500664 (-6.331237) | 0.065521 / 0.075469 (-0.009948) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.246014 / 1.841788 (-0.595774) | 15.455336 / 8.074308 (7.381028) | 13.559111 / 10.191392 (3.367719) | 0.169131 / 0.680424 (-0.511293) | 0.017812 / 0.534201 (-0.516389) | 0.421161 / 0.579283 (-0.158122) | 0.458286 / 0.434364 (0.023922) | 0.534692 / 0.540337 (-0.005645) | 0.639299 / 1.386936 (-0.747637) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2b7558953b5a071194356bbe4c596a2890a3b847 \"CML watermark\")\n" ]
2023-01-25T17:24:01
2023-01-25T18:33:35
2023-01-25T18:26:15
null
lhoestq
https://github.com/huggingface/datasets/pull/5463
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5463", "html_url": "https://github.com/huggingface/datasets/pull/5463", "diff_url": "https://github.com/huggingface/datasets/pull/5463.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5463.patch", "merged_at": "2023-01-25T18:26:15" }
true
1,556,572,144
5,462
Concatenate on axis=1 with misaligned blocks
closed
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008860 / 0.011353 (-0.002493) | 0.004564 / 0.011008 (-0.006444) | 0.101556 / 0.038508 (0.063048) | 0.030000 / 0.023109 (0.006891) | 0.304404 / 0.275898 (0.028506) | 0.366247 / 0.323480 (0.042767) | 0.007182 / 0.007986 (-0.000804) | 0.003583 / 0.004328 (-0.000746) | 0.079665 / 0.004250 (0.075415) | 0.036529 / 0.037052 (-0.000523) | 0.310998 / 0.258489 (0.052509) | 0.346954 / 0.293841 (0.053113) | 0.034098 / 0.128546 (-0.094448) | 0.011576 / 0.075646 (-0.064070) | 0.320448 / 0.419271 (-0.098824) | 0.043328 / 0.043533 (-0.000205) | 0.307317 / 0.255139 (0.052178) | 0.325071 / 0.283200 (0.041871) | 0.096406 / 0.141683 (-0.045277) | 1.540331 / 1.452155 (0.088176) | 1.589533 / 1.492716 (0.096817) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011034 / 0.018006 (-0.006972) | 0.422066 / 0.000490 (0.421577) | 0.002409 / 0.000200 (0.002209) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023703 / 0.037411 (-0.013708) | 0.099935 / 0.014526 (0.085409) | 0.105966 / 0.176557 (-0.070591) | 0.142259 / 0.737135 (-0.594876) | 0.109327 / 0.296338 (-0.187011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418381 / 0.215209 (0.203172) | 4.177564 / 2.077655 (2.099909) | 1.880196 / 1.504120 (0.376076) | 1.669169 / 1.541195 (0.127974) | 1.725989 / 1.468490 (0.257499) | 0.689384 / 4.584777 (-3.895393) | 3.380963 / 3.745712 (-0.364749) | 1.884192 / 5.269862 (-3.385670) | 1.162409 / 4.565676 (-3.403268) | 0.082045 / 0.424275 (-0.342230) | 0.012575 / 0.007607 (0.004968) | 0.525824 / 0.226044 (0.299779) | 5.272574 / 2.268929 (3.003646) | 2.283492 / 55.444624 (-53.161132) | 1.947390 / 6.876477 (-4.929087) | 2.013790 / 2.142072 (-0.128283) | 0.806280 / 4.805227 (-3.998948) | 0.149267 / 6.500664 (-6.351397) | 0.066967 / 0.075469 (-0.008502) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.216511 / 1.841788 (-0.625277) | 13.869829 / 8.074308 (5.795521) | 14.189967 / 10.191392 (3.998575) | 0.148716 / 0.680424 (-0.531708) | 0.028324 / 0.534201 (-0.505877) | 0.390856 / 0.579283 (-0.188427) | 0.404389 / 0.434364 (-0.029975) | 0.456050 / 0.540337 (-0.084287) | 0.544139 / 1.386936 (-0.842797) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006727 / 0.011353 (-0.004626) | 0.004515 / 0.011008 (-0.006494) | 0.098791 / 0.038508 (0.060283) | 0.027596 / 0.023109 (0.004487) | 0.439066 / 0.275898 (0.163168) | 0.480555 / 0.323480 (0.157076) | 0.005066 / 0.007986 (-0.002920) | 0.004669 / 0.004328 (0.000341) | 0.075334 / 0.004250 (0.071084) | 0.039779 / 0.037052 (0.002726) | 0.439860 / 0.258489 (0.181371) | 0.480787 / 0.293841 (0.186946) | 0.031550 / 0.128546 (-0.096996) | 0.011668 / 0.075646 (-0.063978) | 0.317348 / 0.419271 (-0.101923) | 0.041312 / 0.043533 (-0.002220) | 0.442934 / 0.255139 (0.187795) | 0.463677 / 0.283200 (0.180478) | 0.090066 / 0.141683 (-0.051617) | 1.544152 / 1.452155 (0.091998) | 1.584455 / 1.492716 (0.091738) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224284 / 0.018006 (0.206278) | 0.406982 / 0.000490 (0.406492) | 0.000427 / 0.000200 (0.000227) | 0.000061 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024914 / 0.037411 (-0.012497) | 0.102608 / 0.014526 (0.088082) | 0.106931 / 0.176557 (-0.069626) | 0.140828 / 0.737135 (-0.596308) | 0.112015 / 0.296338 (-0.184324) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471078 / 0.215209 (0.255869) | 4.705742 / 2.077655 (2.628088) | 2.437442 / 1.504120 (0.933322) | 2.242768 / 1.541195 (0.701573) | 2.302158 / 1.468490 (0.833668) | 0.697314 / 4.584777 (-3.887462) | 3.357730 / 3.745712 (-0.387982) | 1.913306 / 5.269862 (-3.356556) | 1.173879 / 4.565676 (-3.391798) | 0.083257 / 0.424275 (-0.341018) | 0.012480 / 0.007607 (0.004873) | 0.573407 / 0.226044 (0.347362) | 5.728650 / 2.268929 (3.459721) | 2.868863 / 55.444624 (-52.575761) | 2.548640 / 6.876477 (-4.327837) | 2.596622 / 2.142072 (0.454549) | 0.805563 / 4.805227 (-3.999664) | 0.150860 / 6.500664 (-6.349804) | 0.068344 / 0.075469 (-0.007125) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.300368 / 1.841788 (-0.541420) | 13.920451 / 8.074308 (5.846143) | 14.222430 / 10.191392 (4.031038) | 0.152497 / 0.680424 (-0.527927) | 0.017415 / 0.534201 (-0.516786) | 0.378827 / 0.579283 (-0.200456) | 0.384165 / 0.434364 (-0.050199) | 0.439364 / 0.540337 (-0.100973) | 0.525710 / 1.386936 (-0.861226) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2cd22277fa87e02ad9970483f5b75aacdfbf9a70 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008482 / 0.011353 (-0.002871) | 0.004405 / 0.011008 (-0.006604) | 0.099662 / 0.038508 (0.061154) | 0.029062 / 0.023109 (0.005953) | 0.298329 / 0.275898 (0.022431) | 0.332837 / 0.323480 (0.009357) | 0.006760 / 0.007986 (-0.001225) | 0.003290 / 0.004328 (-0.001039) | 0.077659 / 0.004250 (0.073409) | 0.034745 / 0.037052 (-0.002307) | 0.303134 / 0.258489 (0.044644) | 0.346402 / 0.293841 (0.052561) | 0.033511 / 0.128546 (-0.095035) | 0.011464 / 0.075646 (-0.064183) | 0.322932 / 0.419271 (-0.096340) | 0.040697 / 0.043533 (-0.002836) | 0.301951 / 0.255139 (0.046812) | 0.328961 / 0.283200 (0.045761) | 0.084802 / 0.141683 (-0.056881) | 1.506247 / 1.452155 (0.054092) | 1.547631 / 1.492716 (0.054915) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.190370 / 0.018006 (0.172363) | 0.405786 / 0.000490 (0.405297) | 0.002196 / 0.000200 (0.001997) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022958 / 0.037411 (-0.014453) | 0.095736 / 0.014526 (0.081210) | 0.103684 / 0.176557 (-0.072872) | 0.138200 / 0.737135 (-0.598936) | 0.105618 / 0.296338 (-0.190721) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415239 / 0.215209 (0.200030) | 4.147223 / 2.077655 (2.069569) | 1.850322 / 1.504120 (0.346202) | 1.662815 / 1.541195 (0.121620) | 1.671563 / 1.468490 (0.203073) | 0.693806 / 4.584777 (-3.890971) | 3.352938 / 3.745712 (-0.392774) | 1.849257 / 5.269862 (-3.420604) | 1.161603 / 4.565676 (-3.404074) | 0.081884 / 0.424275 (-0.342391) | 0.012726 / 0.007607 (0.005119) | 0.521105 / 0.226044 (0.295061) | 5.231910 / 2.268929 (2.962981) | 2.306073 / 55.444624 (-53.138551) | 1.950449 / 6.876477 (-4.926028) | 1.988433 / 2.142072 (-0.153640) | 0.811168 / 4.805227 (-3.994059) | 0.149960 / 6.500664 (-6.350704) | 0.064845 / 0.075469 (-0.010624) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221487 / 1.841788 (-0.620301) | 13.756534 / 8.074308 (5.682226) | 13.825369 / 10.191392 (3.633977) | 0.155641 / 0.680424 (-0.524783) | 0.028444 / 0.534201 (-0.505757) | 0.390364 / 0.579283 (-0.188919) | 0.397592 / 0.434364 (-0.036772) | 0.455905 / 0.540337 (-0.084433) | 0.534606 / 1.386936 (-0.852330) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006281 / 0.011353 (-0.005071) | 0.004533 / 0.011008 (-0.006475) | 0.098328 / 0.038508 (0.059820) | 0.026998 / 0.023109 (0.003889) | 0.424814 / 0.275898 (0.148915) | 0.457653 / 0.323480 (0.134173) | 0.004617 / 0.007986 (-0.003368) | 0.003320 / 0.004328 (-0.001009) | 0.075884 / 0.004250 (0.071634) | 0.035865 / 0.037052 (-0.001187) | 0.431674 / 0.258489 (0.173185) | 0.468286 / 0.293841 (0.174445) | 0.031915 / 0.128546 (-0.096631) | 0.011680 / 0.075646 (-0.063967) | 0.319575 / 0.419271 (-0.099696) | 0.047792 / 0.043533 (0.004259) | 0.428191 / 0.255139 (0.173052) | 0.445657 / 0.283200 (0.162458) | 0.090464 / 0.141683 (-0.051218) | 1.465480 / 1.452155 (0.013326) | 1.548985 / 1.492716 (0.056268) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185671 / 0.018006 (0.167664) | 0.399274 / 0.000490 (0.398784) | 0.002822 / 0.000200 (0.002622) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025934 / 0.037411 (-0.011477) | 0.099480 / 0.014526 (0.084954) | 0.110264 / 0.176557 (-0.066293) | 0.140558 / 0.737135 (-0.596577) | 0.110832 / 0.296338 (-0.185507) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473491 / 0.215209 (0.258282) | 4.722507 / 2.077655 (2.644852) | 2.456242 / 1.504120 (0.952122) | 2.255999 / 1.541195 (0.714804) | 2.300816 / 1.468490 (0.832326) | 0.698226 / 4.584777 (-3.886551) | 3.397296 / 3.745712 (-0.348416) | 2.741674 / 5.269862 (-2.528187) | 1.462103 / 4.565676 (-3.103573) | 0.082736 / 0.424275 (-0.341539) | 0.012183 / 0.007607 (0.004576) | 0.580144 / 0.226044 (0.354099) | 5.794351 / 2.268929 (3.525422) | 2.881201 / 55.444624 (-52.563423) | 2.544384 / 6.876477 (-4.332093) | 2.555227 / 2.142072 (0.413154) | 0.805849 / 4.805227 (-3.999378) | 0.151822 / 6.500664 (-6.348842) | 0.067477 / 0.075469 (-0.007992) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.300224 / 1.841788 (-0.541564) | 13.595361 / 8.074308 (5.521053) | 13.967622 / 10.191392 (3.776230) | 0.129222 / 0.680424 (-0.551202) | 0.016939 / 0.534201 (-0.517262) | 0.375190 / 0.579283 (-0.204094) | 0.383511 / 0.434364 (-0.050853) | 0.437179 / 0.540337 (-0.103158) | 0.525674 / 1.386936 (-0.861262) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7ed52db3d67cc8d0f2adfe53b2ec8d1124a174b8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012364 / 0.011353 (0.001011) | 0.006098 / 0.011008 (-0.004911) | 0.158908 / 0.038508 (0.120400) | 0.039798 / 0.023109 (0.016689) | 0.383786 / 0.275898 (0.107888) | 0.533961 / 0.323480 (0.210481) | 0.012079 / 0.007986 (0.004094) | 0.006483 / 0.004328 (0.002155) | 0.109660 / 0.004250 (0.105410) | 0.048391 / 0.037052 (0.011339) | 0.447426 / 0.258489 (0.188937) | 0.477292 / 0.293841 (0.183451) | 0.066492 / 0.128546 (-0.062054) | 0.021155 / 0.075646 (-0.054492) | 0.474473 / 0.419271 (0.055202) | 0.063520 / 0.043533 (0.019987) | 0.444941 / 0.255139 (0.189802) | 0.450675 / 0.283200 (0.167475) | 0.129236 / 0.141683 (-0.012447) | 2.009362 / 1.452155 (0.557207) | 1.912067 / 1.492716 (0.419350) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260384 / 0.018006 (0.242378) | 0.577654 / 0.000490 (0.577165) | 0.004977 / 0.000200 (0.004777) | 0.000110 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028101 / 0.037411 (-0.009310) | 0.161680 / 0.014526 (0.147154) | 0.146107 / 0.176557 (-0.030450) | 0.173878 / 0.737135 (-0.563257) | 0.186149 / 0.296338 (-0.110190) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.689835 / 0.215209 (0.474626) | 6.775888 / 2.077655 (4.698234) | 2.885499 / 1.504120 (1.381379) | 2.486855 / 1.541195 (0.945660) | 2.540831 / 1.468490 (1.072341) | 1.328135 / 4.584777 (-3.256642) | 5.964983 / 3.745712 (2.219271) | 3.400713 / 5.269862 (-1.869149) | 2.423257 / 4.565676 (-2.142419) | 0.129767 / 0.424275 (-0.294508) | 0.017936 / 0.007607 (0.010328) | 0.909284 / 0.226044 (0.683239) | 8.778791 / 2.268929 (6.509863) | 3.890757 / 55.444624 (-51.553867) | 3.072116 / 6.876477 (-3.804360) | 3.085390 / 2.142072 (0.943318) | 1.571710 / 4.805227 (-3.233517) | 0.279290 / 6.500664 (-6.221374) | 0.087775 / 0.075469 (0.012306) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.751223 / 1.841788 (-0.090564) | 20.313135 / 8.074308 (12.238827) | 22.793800 / 10.191392 (12.602408) | 0.296052 / 0.680424 (-0.384372) | 0.053420 / 0.534201 (-0.480781) | 0.600626 / 0.579283 (0.021343) | 0.634505 / 0.434364 (0.200142) | 0.724000 / 0.540337 (0.183663) | 0.869283 / 1.386936 (-0.517653) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.014876 / 0.011353 (0.003523) | 0.008113 / 0.011008 (-0.002895) | 0.177038 / 0.038508 (0.138530) | 0.050825 / 0.023109 (0.027716) | 0.473989 / 0.275898 (0.198091) | 0.601058 / 0.323480 (0.277578) | 0.007536 / 0.007986 (-0.000450) | 0.006761 / 0.004328 (0.002432) | 0.105260 / 0.004250 (0.101010) | 0.073960 / 0.037052 (0.036908) | 0.447711 / 0.258489 (0.189222) | 0.609998 / 0.293841 (0.316157) | 0.061280 / 0.128546 (-0.067267) | 0.019370 / 0.075646 (-0.056276) | 0.510466 / 0.419271 (0.091194) | 0.062695 / 0.043533 (0.019162) | 0.436778 / 0.255139 (0.181639) | 0.489916 / 0.283200 (0.206717) | 0.137305 / 0.141683 (-0.004378) | 1.801554 / 1.452155 (0.349399) | 2.082409 / 1.492716 (0.589692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291304 / 0.018006 (0.273298) | 0.599041 / 0.000490 (0.598551) | 0.008017 / 0.000200 (0.007817) | 0.000127 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031243 / 0.037411 (-0.006169) | 0.139689 / 0.014526 (0.125163) | 0.138678 / 0.176557 (-0.037878) | 0.180458 / 0.737135 (-0.556677) | 0.149753 / 0.296338 (-0.146585) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.699692 / 0.215209 (0.484482) | 7.273327 / 2.077655 (5.195672) | 3.222650 / 1.504120 (1.718530) | 2.679424 / 1.541195 (1.138229) | 2.842378 / 1.468490 (1.373888) | 1.394633 / 4.584777 (-3.190143) | 6.379970 / 3.745712 (2.634258) | 5.944663 / 5.269862 (0.674801) | 3.105214 / 4.565676 (-1.460462) | 0.138790 / 0.424275 (-0.285485) | 0.014211 / 0.007607 (0.006604) | 0.815275 / 0.226044 (0.589230) | 8.549334 / 2.268929 (6.280405) | 3.754795 / 55.444624 (-51.689829) | 3.125222 / 6.876477 (-3.751255) | 3.269639 / 2.142072 (1.127566) | 1.464187 / 4.805227 (-3.341040) | 0.314557 / 6.500664 (-6.186107) | 0.107354 / 0.075469 (0.031885) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.480793 / 1.841788 (-0.360995) | 16.770328 / 8.074308 (8.696019) | 18.054861 / 10.191392 (7.863469) | 0.198257 / 0.680424 (-0.482167) | 0.026493 / 0.534201 (-0.507708) | 0.489701 / 0.579283 (-0.089582) | 0.540890 / 0.434364 (0.106526) | 0.566675 / 0.540337 (0.026337) | 0.661918 / 1.386936 (-0.725018) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4b839b50e9a81693e065f5299990026b97f6580 \"CML watermark\")\n" ]
2023-01-25T12:33:22
2023-01-26T09:37:00
2023-01-26T09:27:19
Allow to concatenate on axis 1 two tables made of misaligned blocks. For example if the first table has 2 row blocks of 3 rows each, and the second table has 3 row blocks or 2 rows each. To do that, I slice the row blocks to re-align the blocks. Fix https://github.com/huggingface/datasets/issues/5413
lhoestq
https://github.com/huggingface/datasets/pull/5462
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5462", "html_url": "https://github.com/huggingface/datasets/pull/5462", "diff_url": "https://github.com/huggingface/datasets/pull/5462.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5462.patch", "merged_at": "2023-01-26T09:27:19" }
true
1,555,532,719
5,461
Discrepancy in `nyu_depth_v2` dataset
open
[ "Ccing @dwofk (the author of `fast-depth`). \r\n\r\nThanks, @awsaf49 for reporting this. I believe this is because the NYU Depth V2 shipped from `fast-depth` is already preprocessed. \r\n\r\nIf you think it might be better to have the NYU Depth V2 dataset from BTS [here](https://huggingface.co/datasets/sayakpaul/nyu_depth_v2) feel free to open a PR, I am happy to provide guidance :) ", "Good catch ! Ideally it would be nice to have the datasets in the raw form, this way users can choose whatever processing they want to apply", "> Ccing @dwofk (the author of `fast-depth`).\r\n> \r\n> Thanks, @awsaf49 for reporting this. I believe this is because the NYU Depth V2 shipped from `fast-depth` is already preprocessed.\r\n> \r\n> If you think it might be better to have the NYU Depth V2 dataset from BTS [here](https://huggingface.co/datasets/sayakpaul/nyu_depth_v2) feel free to open a PR, I am happy to provide guidance :)\r\n\r\n@sayakpaul I would love to create a PR on this. As this will be my first PR here, some guidance would be helpful.\r\n\r\nNeed a bit of advice on the dataset, there are three publicly available datasets. Which one should I consider for PR?\r\n1. [BTS](https://github.com/cleinc/bts): Containst train/test: 36K/654 data, dtype = `uint16` hence more precise\r\n2. [DenseDepth](https://github.com/ialhashim/DenseDepth) It contains train/test: 50K/654 data, dtype = `uint8` hence less precise\r\n3. [Official](https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html#raw_parts): Size is big 400GB+, requires **MatLab** code for fixing **projection** and **sync**, DataType: `pgm` and `dump` hence can't be used directly.\r\n\r\ncc: @lhoestq\r\n\r\n", "I think BTS. Repositories like https://github.com/vinvino02/GLPDepth usually use BTS. Also, just for clarity, the PR will be to https://huggingface.co/datasets/sayakpaul/nyu_depth_v2. Once we have worked it out, we can update the following things:\r\n\r\n* https://github.com/huggingface/blog/pull/718\r\n* https://huggingface.co/docs/datasets/main/en/depth_estimation\r\n\r\nDon't worry about it if it seems overwhelming. We will work it out together :) \r\n\r\n@lhoestq what do you think? ", "@sayakpaul If I get this right I have to,\r\n1. Create a PR on https://huggingface.co/datasets/sayakpaul/nyu_depth_v2\r\n2. Create a PR on https://github.com/huggingface/blog\r\n3. Create a PR on https://github.com/huggingface/datasets to update https://github.com/huggingface/datasets/blob/main/docs/source/depth_estimation.mdx", "The last two are low-hanging fruits. Don't worry about them. ", "Yup opening a PR to use BTS on https://huggingface.co/datasets/sayakpaul/nyu_depth_v2 sounds good :) Thanks for the help !", "Finally, I have found the origin of the **discretized depth map**. When I first loaded the datasets from HF I noticed it was 30GB but in DenseDepth data is only 4GB with dtype=uint8. This means data from fast-depth (before loading to HF) must have high precision. So when I tried to dig deeper by directly loading depth_map from `h5py`, I found depth_map from `h5py` came with `float32`. But when the data is processed in HF with `datasets.Image()` it was directly converted to `uint8` from `float32` hence the **discretized** depth map.\r\nhttps://github.com/huggingface/datasets/blob/c78559cacbb0ca6e0bc8bfc313cc0359f8c23ead/src/datasets/features/image.py#L91-L93\r\n\r\n## Solutions:\r\n\r\n#### 1. Array2D\r\nUse `Array2D` feature with `float32` for depth_map \r\n\r\n* Code:\r\n```py\r\nFeatures({'depth_map': Array2D(shape=(480, 640), dtype='float32')})\r\n```\r\n* Pros:\r\nNo precision loss.\r\n\r\n* Cons:\r\nAs depth_map is saved as Array I think it can't be visuzlied in [hf.co/dataset](https://huggingface.co/datasets/sayakpaul/nyu_depth_v2) page like segmentation mask.\r\n\r\n#### 2. Uint16\r\nUse `uint16` as dtype for Image in `_h5_loader` for saving depth maps and accept `uint16` dtype in `datasets.Image()` feature.\r\n\r\n* Code\r\n```py\r\ndepth = np.array(h5f[\"depth\"])\r\ndepth /= 10.0 # [0, max_depth] -> [0, 1]\r\ndepth *= (2**16 -1) # transform from [0, 1] -> [0, 2^16 - 1]\r\ndepth = depth.astype('uint16')\r\n```\r\n* Pros:\r\n * We can visualize depth map in hf.co/datasets page like segmentation mask.\r\n * No need for post-processing.\r\n\r\n* Cons:\r\n * We need to make two change\r\n * Modify `_h5_loader` in https://huggingface.co/datasets/sayakpaul/nyu_depth_v2 to convert depth_map from `float32` to `uint16`.\r\n * Make sure `datasets.Image()` converts `np.ndarray` to `uint16` checking max value\r\n * Precision loss due to `float32` to `uint16`\r\n * Post-processing required for depth_map to transform from `[0, 2^16 - 1]` to `[0, max_depth]` before feeding them to model.", "Thanks so much for digging into this. \r\n\r\nSince the second solution entails changes to core datatypes in `datasets`, I think it's better to go with the first solution. \r\n\r\n@lhoestq WDYT?", "@sayakpaul Yes, Solution 1 requires minimal change and provides no precision loss. But I think support for `uint16` image would be a great addition as many datasets come with `uint16` image. For example [UW-Madison GI Tract Image Segmentation](https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation) dataset, here the image itself comes with `uint16` dtype rather than mask. So, saving `uint16` image with `uint8` will result in precision loss.\r\n\r\nPerhaps we can adapt solution 1 for this issue and Add support for `uint16` image separately?", "Using Array2D makes it not practical to use to train a model - in `transformers` we expect an image type.\r\n\r\nThere is a pull request to support more precision than uint8 in Image() here: https://github.com/huggingface/datasets/pull/5365/files\r\n\r\nwe can probably merge it today and do a release right away", "Fantastic, @lhoestq! \r\n\r\n@awsaf49 then let's wait for the PR to get merged and then take the next steps? ", "Sure", "The PR adds support for uint16 which is ok for BTS if I understand correctly, would it be ok for you ?", "If the main issue with the current version of NYU we have on the Hub is related to the precision loss stemming from `Image()`, I'd prefer if `Image()` supported float32 as well. ", "I also prefer `float32` as it offers more precision. But I'm not sure if we'll be able to visualize image with `float32` precision.", "We could have a separate loading for the float32 one using Array2D, but I feel like it's less convenient to use due to the amount of disk space and because it's not an Image() type. That's why I think uint16 is a better solution for users", "A bit confused here, If https://github.com/huggingface/datasets/pull/5365 gets merged won't this issue will be resolved automatically?", "Yes in theory :)", "actually float32 also seems to work in this PR (it just doesn't work for multi-channel)", "In that case, a new PR isn't necessary, right?", "Yep. I just tested from the PR and it works:\r\n```python\r\n>>> train_dataset = load_dataset(\"sayakpaul/nyu_depth_v2\", split=\"train\", streaming=True) \r\nDownloading readme: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 8.71k/8.71k [00:00<00:00, 3.60MB/s]\r\n>>> next(iter(train_dataset))\r\n{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=640x480 at 0x1382ED7F0>,\r\n 'depth_map': <PIL.TiffImagePlugin.TiffImageFile image mode=F size=640x480 at 0x1382EDF28>}\r\n>>> x = next(iter(train_dataset))\r\n>>> np.asarray(x[\"depth_map\"]) \r\narray([[0. , 0. , 0. , ..., 0. , 0. ,\r\n 0. ],\r\n [0. , 0. , 0. , ..., 0. , 0. ,\r\n 0. ],\r\n [0. , 0. , 0. , ..., 0. , 0. ,\r\n 0. ],\r\n ...,\r\n [0. , 2.2861192, 2.2861192, ..., 2.234162 , 2.234162 ,\r\n 0. ],\r\n [0. , 2.2861192, 2.2861192, ..., 2.234162 , 2.234162 ,\r\n 0. ],\r\n [0. , 2.2861192, 2.2861192, ..., 2.234162 , 2.234162 ,\r\n 0. ]], dtype=float32)\r\n```", "Great! the case is closed! This issue has been solved and I have to say, it was quite the thrill ride. I felt like Sherlock Holmes, solving a mystery and finding the bug๐Ÿ•ต๏ธโ€โ™‚๏ธ. But in all seriousness, it was a pleasure working on this issue and I'm glad we could get to the bottom of it.\r\n\r\nOn another note, should I consider closing the issue? I think we still need to make updates on https://github.com/huggingface/blog and https://github.com/huggingface/datasets/blob/main/docs/source/depth_estimation.mdx", "Haha thanks Mr Holmes :p\r\n\r\nmaybe let's close this issue when we're done updating the blog post and the documentation", "@awsaf49 thank you for your hard work! \r\n\r\nI am a little unsure why the other links need to be updated, though. They all rely on datasets internally. ", "I think depth_map still shows discretized version. It would be nice to have corrected one.\r\n<img src=\"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/depth_est_target_viz.png\" width = 300>", "Also, I think we need to make some changes in the code to visualize depth_map as it is `float32` . `plot.imshow()` supports either [0, 1] + float32 or [0. 255] + uint8", "Oh yes! Do you want to start with the fixes? Please feel free to say no but I wanted to make sure your contributions are reflected properly in our doc and the blog :)", "Yes I think that would be nice :)", "I'll make the changes tomorrow. I hope it's okay..." ]
2023-01-24T19:15:46
2023-02-06T20:52:00
null
### Describe the bug I think there is a discrepancy between depth map of `nyu_depth_v2` dataset [here](https://huggingface.co/docs/datasets/main/en/depth_estimation) and actual depth map. Depth values somehow got **discretized/clipped** resulting in depth maps that are different from actual ones. Here is a side-by-side comparison, ![image](https://user-images.githubusercontent.com/36858976/214381162-1d9582c2-6750-4114-a01a-61ca1cd5f872.png) I tried to find the origin of this issue but sadly as I mentioned in tensorflow/datasets/issues/4674, the download link from `fast-depth` doesn't work anymore hence couldn't verify if the error originated there or during porting data from there to HF. Hi @sayakpaul, as you worked on huggingface/datasets/issues/5255, if you still have access to that data could you please share the data or perhaps checkout this issue? ### Steps to reproduce the bug This [notebook](https://colab.research.google.com/drive/1K3ZU8XUPRDOYD38MQS9nreQXJYitlKSW?usp=sharing#scrollTo=UEW7QSh0jf0i) from @sayakpaul could be used to generate depth maps and actual ground truths could be checked from this [dataset](https://www.kaggle.com/datasets/awsaf49/nyuv2-bts-dataset) from BTS repo. > Note: BTS dataset has only 36K data compared to the train-test 50K. They sampled the data as adjacent frames look quite the same ### Expected behavior Expected depth maps should be smooth rather than discrete/clipped. ### Environment info - `datasets` version: 2.8.1.dev0 - Platform: Linux-5.10.147+-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 9.0.0 - Pandas version: 1.3.5
awsaf49
https://github.com/huggingface/datasets/issues/5461
null
false
1,555,387,532
5,460
Document that removing all the columns returns an empty document and the num_row is lost
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011812 / 0.011353 (0.000459) | 0.006878 / 0.011008 (-0.004130) | 0.128720 / 0.038508 (0.090212) | 0.038506 / 0.023109 (0.015397) | 0.359670 / 0.275898 (0.083772) | 0.422908 / 0.323480 (0.099428) | 0.010115 / 0.007986 (0.002129) | 0.004332 / 0.004328 (0.000004) | 0.096281 / 0.004250 (0.092031) | 0.048850 / 0.037052 (0.011798) | 0.373795 / 0.258489 (0.115306) | 0.414643 / 0.293841 (0.120802) | 0.057568 / 0.128546 (-0.070978) | 0.024135 / 0.075646 (-0.051512) | 0.411764 / 0.419271 (-0.007507) | 0.060167 / 0.043533 (0.016634) | 0.367119 / 0.255139 (0.111980) | 0.391813 / 0.283200 (0.108613) | 0.112125 / 0.141683 (-0.029558) | 1.869560 / 1.452155 (0.417406) | 1.845649 / 1.492716 (0.352932) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211449 / 0.018006 (0.193443) | 0.522453 / 0.000490 (0.521963) | 0.003984 / 0.000200 (0.003784) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026015 / 0.037411 (-0.011397) | 0.117747 / 0.014526 (0.103221) | 0.125037 / 0.176557 (-0.051520) | 0.168351 / 0.737135 (-0.568785) | 0.132390 / 0.296338 (-0.163949) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.605653 / 0.215209 (0.390444) | 5.883452 / 2.077655 (3.805798) | 2.367052 / 1.504120 (0.862932) | 2.137671 / 1.541195 (0.596476) | 2.042370 / 1.468490 (0.573880) | 1.168442 / 4.584777 (-3.416335) | 5.205236 / 3.745712 (1.459524) | 2.992514 / 5.269862 (-2.277348) | 2.191829 / 4.565676 (-2.373847) | 0.137702 / 0.424275 (-0.286574) | 0.015898 / 0.007607 (0.008291) | 0.783987 / 0.226044 (0.557942) | 7.768965 / 2.268929 (5.500036) | 3.249149 / 55.444624 (-52.195476) | 2.530687 / 6.876477 (-4.345790) | 2.675212 / 2.142072 (0.533140) | 1.482804 / 4.805227 (-3.322423) | 0.276845 / 6.500664 (-6.223819) | 0.080597 / 0.075469 (0.005128) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.519086 / 1.841788 (-0.322701) | 17.394093 / 8.074308 (9.319785) | 19.613554 / 10.191392 (9.422162) | 0.253291 / 0.680424 (-0.427133) | 0.047746 / 0.534201 (-0.486455) | 0.547114 / 0.579283 (-0.032170) | 0.623873 / 0.434364 (0.189509) | 0.631924 / 0.540337 (0.091586) | 0.744390 / 1.386936 (-0.642546) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009229 / 0.011353 (-0.002124) | 0.006206 / 0.011008 (-0.004802) | 0.121866 / 0.038508 (0.083357) | 0.033629 / 0.023109 (0.010519) | 0.435172 / 0.275898 (0.159274) | 0.472093 / 0.323480 (0.148613) | 0.006946 / 0.007986 (-0.001039) | 0.004848 / 0.004328 (0.000519) | 0.097289 / 0.004250 (0.093038) | 0.046982 / 0.037052 (0.009930) | 0.447365 / 0.258489 (0.188876) | 0.491213 / 0.293841 (0.197372) | 0.055486 / 0.128546 (-0.073060) | 0.019788 / 0.075646 (-0.055858) | 0.399830 / 0.419271 (-0.019441) | 0.058943 / 0.043533 (0.015411) | 0.447658 / 0.255139 (0.192519) | 0.465752 / 0.283200 (0.182552) | 0.110441 / 0.141683 (-0.031242) | 1.773155 / 1.452155 (0.321001) | 1.899370 / 1.492716 (0.406653) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191188 / 0.018006 (0.173181) | 0.523721 / 0.000490 (0.523232) | 0.004008 / 0.000200 (0.003808) | 0.000126 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032579 / 0.037411 (-0.004833) | 0.120870 / 0.014526 (0.106344) | 0.154991 / 0.176557 (-0.021565) | 0.175450 / 0.737135 (-0.561685) | 0.136526 / 0.296338 (-0.159813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627262 / 0.215209 (0.412052) | 6.457989 / 2.077655 (4.380334) | 2.935188 / 1.504120 (1.431068) | 2.558705 / 1.541195 (1.017510) | 2.669455 / 1.468490 (1.200965) | 1.228791 / 4.584777 (-3.355985) | 5.621262 / 3.745712 (1.875549) | 3.181775 / 5.269862 (-2.088086) | 2.115116 / 4.565676 (-2.450560) | 0.159348 / 0.424275 (-0.264927) | 0.013598 / 0.007607 (0.005991) | 0.834732 / 0.226044 (0.608687) | 8.051097 / 2.268929 (5.782168) | 3.761681 / 55.444624 (-51.682943) | 2.898158 / 6.876477 (-3.978319) | 2.936289 / 2.142072 (0.794217) | 1.476307 / 4.805227 (-3.328920) | 0.269845 / 6.500664 (-6.230819) | 0.087225 / 0.075469 (0.011756) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.632522 / 1.841788 (-0.209266) | 17.615297 / 8.074308 (9.540989) | 20.501172 / 10.191392 (10.309780) | 0.248845 / 0.680424 (-0.431579) | 0.024852 / 0.534201 (-0.509349) | 0.498957 / 0.579283 (-0.080326) | 0.588566 / 0.434364 (0.154202) | 0.611051 / 0.540337 (0.070714) | 0.726321 / 1.386936 (-0.660615) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#adaaf0b5ad596538c744d41bb56ce472834b6573 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008920 / 0.011353 (-0.002433) | 0.004666 / 0.011008 (-0.006342) | 0.098584 / 0.038508 (0.060076) | 0.030213 / 0.023109 (0.007103) | 0.298180 / 0.275898 (0.022282) | 0.358932 / 0.323480 (0.035452) | 0.007182 / 0.007986 (-0.000804) | 0.005430 / 0.004328 (0.001102) | 0.077962 / 0.004250 (0.073712) | 0.038516 / 0.037052 (0.001463) | 0.308840 / 0.258489 (0.050351) | 0.343678 / 0.293841 (0.049837) | 0.033701 / 0.128546 (-0.094845) | 0.011460 / 0.075646 (-0.064186) | 0.319809 / 0.419271 (-0.099462) | 0.040731 / 0.043533 (-0.002802) | 0.299772 / 0.255139 (0.044633) | 0.324292 / 0.283200 (0.041092) | 0.087755 / 0.141683 (-0.053928) | 1.493077 / 1.452155 (0.040922) | 1.527462 / 1.492716 (0.034746) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187927 / 0.018006 (0.169921) | 0.412785 / 0.000490 (0.412296) | 0.003235 / 0.000200 (0.003035) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023313 / 0.037411 (-0.014098) | 0.095663 / 0.014526 (0.081137) | 0.105094 / 0.176557 (-0.071463) | 0.140389 / 0.737135 (-0.596746) | 0.108477 / 0.296338 (-0.187861) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.410680 / 0.215209 (0.195471) | 4.109287 / 2.077655 (2.031632) | 1.833214 / 1.504120 (0.329094) | 1.622837 / 1.541195 (0.081642) | 1.679899 / 1.468490 (0.211409) | 0.686920 / 4.584777 (-3.897857) | 3.463267 / 3.745712 (-0.282445) | 1.867035 / 5.269862 (-3.402826) | 1.150631 / 4.565676 (-3.415046) | 0.081209 / 0.424275 (-0.343066) | 0.012384 / 0.007607 (0.004777) | 0.521070 / 0.226044 (0.295026) | 5.208829 / 2.268929 (2.939900) | 2.289032 / 55.444624 (-53.155592) | 1.942976 / 6.876477 (-4.933501) | 1.990660 / 2.142072 (-0.151413) | 0.802976 / 4.805227 (-4.002252) | 0.148199 / 6.500664 (-6.352465) | 0.064644 / 0.075469 (-0.010825) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277029 / 1.841788 (-0.564759) | 13.915489 / 8.074308 (5.841181) | 14.035486 / 10.191392 (3.844094) | 0.138205 / 0.680424 (-0.542219) | 0.028968 / 0.534201 (-0.505232) | 0.394275 / 0.579283 (-0.185008) | 0.399967 / 0.434364 (-0.034397) | 0.460595 / 0.540337 (-0.079742) | 0.537625 / 1.386936 (-0.849311) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006485 / 0.011353 (-0.004868) | 0.004534 / 0.011008 (-0.006474) | 0.097742 / 0.038508 (0.059234) | 0.027231 / 0.023109 (0.004122) | 0.431321 / 0.275898 (0.155423) | 0.469212 / 0.323480 (0.145732) | 0.004894 / 0.007986 (-0.003092) | 0.004147 / 0.004328 (-0.000181) | 0.073650 / 0.004250 (0.069400) | 0.037052 / 0.037052 (-0.000000) | 0.434196 / 0.258489 (0.175707) | 0.480539 / 0.293841 (0.186698) | 0.031923 / 0.128546 (-0.096623) | 0.011522 / 0.075646 (-0.064124) | 0.317062 / 0.419271 (-0.102209) | 0.041124 / 0.043533 (-0.002409) | 0.432013 / 0.255139 (0.176874) | 0.456760 / 0.283200 (0.173560) | 0.089757 / 0.141683 (-0.051925) | 1.497752 / 1.452155 (0.045597) | 1.585342 / 1.492716 (0.092626) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227784 / 0.018006 (0.209778) | 0.404570 / 0.000490 (0.404080) | 0.000556 / 0.000200 (0.000356) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025201 / 0.037411 (-0.012210) | 0.099348 / 0.014526 (0.084822) | 0.114984 / 0.176557 (-0.061573) | 0.147039 / 0.737135 (-0.590097) | 0.109727 / 0.296338 (-0.186611) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468415 / 0.215209 (0.253206) | 4.692228 / 2.077655 (2.614573) | 2.403382 / 1.504120 (0.899262) | 2.196026 / 1.541195 (0.654832) | 2.234736 / 1.468490 (0.766246) | 0.703011 / 4.584777 (-3.881766) | 3.451513 / 3.745712 (-0.294199) | 2.596811 / 5.269862 (-2.673051) | 1.544079 / 4.565676 (-3.021598) | 0.083153 / 0.424275 (-0.341123) | 0.012605 / 0.007607 (0.004998) | 0.570265 / 0.226044 (0.344220) | 5.735996 / 2.268929 (3.467067) | 2.865336 / 55.444624 (-52.579288) | 2.508340 / 6.876477 (-4.368137) | 2.547144 / 2.142072 (0.405072) | 0.813018 / 4.805227 (-3.992210) | 0.150327 / 6.500664 (-6.350337) | 0.065837 / 0.075469 (-0.009632) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268941 / 1.841788 (-0.572847) | 13.835698 / 8.074308 (5.761390) | 13.992726 / 10.191392 (3.801334) | 0.127751 / 0.680424 (-0.552673) | 0.016673 / 0.534201 (-0.517528) | 0.381921 / 0.579283 (-0.197362) | 0.390688 / 0.434364 (-0.043676) | 0.446234 / 0.540337 (-0.094103) | 0.532631 / 1.386936 (-0.854305) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1492df3311bfeac55aaedf34c93c014630c4403e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008486 / 0.011353 (-0.002867) | 0.004573 / 0.011008 (-0.006435) | 0.100096 / 0.038508 (0.061588) | 0.029449 / 0.023109 (0.006340) | 0.298384 / 0.275898 (0.022486) | 0.361886 / 0.323480 (0.038406) | 0.006813 / 0.007986 (-0.001173) | 0.003394 / 0.004328 (-0.000935) | 0.077563 / 0.004250 (0.073312) | 0.035605 / 0.037052 (-0.001447) | 0.306864 / 0.258489 (0.048375) | 0.346438 / 0.293841 (0.052597) | 0.033156 / 0.128546 (-0.095390) | 0.011567 / 0.075646 (-0.064079) | 0.322189 / 0.419271 (-0.097083) | 0.040161 / 0.043533 (-0.003372) | 0.299329 / 0.255139 (0.044190) | 0.326375 / 0.283200 (0.043175) | 0.086572 / 0.141683 (-0.055111) | 1.502473 / 1.452155 (0.050319) | 1.528539 / 1.492716 (0.035823) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.008502 / 0.018006 (-0.009505) | 0.411045 / 0.000490 (0.410555) | 0.003179 / 0.000200 (0.002980) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023177 / 0.037411 (-0.014234) | 0.096948 / 0.014526 (0.082422) | 0.104068 / 0.176557 (-0.072489) | 0.138739 / 0.737135 (-0.598396) | 0.108241 / 0.296338 (-0.188097) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411156 / 0.215209 (0.195947) | 4.092992 / 2.077655 (2.015337) | 1.841903 / 1.504120 (0.337783) | 1.637449 / 1.541195 (0.096254) | 1.670968 / 1.468490 (0.202478) | 0.697301 / 4.584777 (-3.887476) | 3.354717 / 3.745712 (-0.390995) | 1.851518 / 5.269862 (-3.418344) | 1.160367 / 4.565676 (-3.405309) | 0.082613 / 0.424275 (-0.341662) | 0.012477 / 0.007607 (0.004870) | 0.524839 / 0.226044 (0.298795) | 5.264173 / 2.268929 (2.995245) | 2.294530 / 55.444624 (-53.150094) | 1.933233 / 6.876477 (-4.943244) | 1.968959 / 2.142072 (-0.173113) | 0.817104 / 4.805227 (-3.988123) | 0.149072 / 6.500664 (-6.351592) | 0.064911 / 0.075469 (-0.010558) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.222215 / 1.841788 (-0.619573) | 13.607545 / 8.074308 (5.533237) | 13.990230 / 10.191392 (3.798838) | 0.150855 / 0.680424 (-0.529568) | 0.028844 / 0.534201 (-0.505357) | 0.396169 / 0.579283 (-0.183114) | 0.406957 / 0.434364 (-0.027407) | 0.464069 / 0.540337 (-0.076268) | 0.554027 / 1.386936 (-0.832909) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006296 / 0.011353 (-0.005057) | 0.004563 / 0.011008 (-0.006445) | 0.097719 / 0.038508 (0.059211) | 0.027106 / 0.023109 (0.003996) | 0.409333 / 0.275898 (0.133435) | 0.445397 / 0.323480 (0.121917) | 0.004906 / 0.007986 (-0.003080) | 0.003316 / 0.004328 (-0.001012) | 0.075363 / 0.004250 (0.071112) | 0.039366 / 0.037052 (0.002314) | 0.412710 / 0.258489 (0.154221) | 0.451789 / 0.293841 (0.157948) | 0.031810 / 0.128546 (-0.096736) | 0.011681 / 0.075646 (-0.063965) | 0.318484 / 0.419271 (-0.100788) | 0.046741 / 0.043533 (0.003208) | 0.411631 / 0.255139 (0.156492) | 0.435274 / 0.283200 (0.152074) | 0.092366 / 0.141683 (-0.049317) | 1.492243 / 1.452155 (0.040089) | 1.617603 / 1.492716 (0.124887) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217376 / 0.018006 (0.199369) | 0.400940 / 0.000490 (0.400450) | 0.003700 / 0.000200 (0.003500) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023733 / 0.037411 (-0.013678) | 0.098553 / 0.014526 (0.084027) | 0.105790 / 0.176557 (-0.070767) | 0.139537 / 0.737135 (-0.597598) | 0.109862 / 0.296338 (-0.186477) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.476562 / 0.215209 (0.261353) | 4.773469 / 2.077655 (2.695814) | 2.447302 / 1.504120 (0.943182) | 2.240596 / 1.541195 (0.699401) | 2.271370 / 1.468490 (0.802880) | 0.698913 / 4.584777 (-3.885864) | 3.345648 / 3.745712 (-0.400064) | 1.845008 / 5.269862 (-3.424854) | 1.163213 / 4.565676 (-3.402464) | 0.082456 / 0.424275 (-0.341819) | 0.012315 / 0.007607 (0.004708) | 0.575881 / 0.226044 (0.349836) | 5.769575 / 2.268929 (3.500647) | 2.909759 / 55.444624 (-52.534865) | 2.580259 / 6.876477 (-4.296218) | 2.590473 / 2.142072 (0.448401) | 0.802765 / 4.805227 (-4.002462) | 0.151514 / 6.500664 (-6.349150) | 0.067718 / 0.075469 (-0.007751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293014 / 1.841788 (-0.548773) | 13.934072 / 8.074308 (5.859763) | 13.538760 / 10.191392 (3.347368) | 0.126490 / 0.680424 (-0.553934) | 0.016653 / 0.534201 (-0.517548) | 0.381220 / 0.579283 (-0.198064) | 0.387571 / 0.434364 (-0.046793) | 0.444674 / 0.540337 (-0.095663) | 0.550802 / 1.386936 (-0.836134) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bed576f2205c96f6cb26b5c6522345cb8b06ecfc \"CML watermark\")\n" ]
2023-01-24T17:33:38
2023-01-25T16:11:10
2023-01-25T16:04:03
null
thomasw21
https://github.com/huggingface/datasets/pull/5460
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5460", "html_url": "https://github.com/huggingface/datasets/pull/5460", "diff_url": "https://github.com/huggingface/datasets/pull/5460.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5460.patch", "merged_at": "2023-01-25T16:04:03" }
true
1,555,367,504
5,459
Disable aiohttp requoting of redirection URL
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "Comment by @lhoestq:\r\n> Do you think we need this in `datasets` if it's fixed on the moon landing side ? In the aiohttp doc they consider those symbols as \"non-safe\" ", "The lib `requests` does not perform that requote on redirect URLs.", "Indeed, the `requests` library does perform a requoting, but this does not unquote `%27`:\r\n```python\r\nIn [1]: from requests.utils import requote_uri\r\n\r\nIn [2]: url = \"https://netloc/path?param=param%27%27value\"\r\n\r\nIn [3]: url\r\nOut[3]: 'https://netloc/path?param=param%27%27value'\r\n\r\nIn [4]: requote_uri(url)\r\nOut[4]: 'https://netloc/path?param=param%27%27value'\r\n```\r\n\r\nHowever, the `aiohttp` library uses `yarl.ULR` and this does unquote `%27`:\r\n```python\r\nIn [5]: from yarl import URL\r\n\r\nIn [6]: url\r\nOut[6]: 'https://netloc/path?param=param%27%27value'\r\n\r\nIn [7]: str(URL(url))\r\nOut[7]: \"https://netloc/path?param=param''value\"\r\n```\r\n\r\nIf we pass `requote_redirect_url=False` to `aiohttp`, then it passes `encoded=True` to `yarl.ULR`: https://github.com/aio-libs/aiohttp/blob/4635161ee8e7ad321cca46e01ce5bfeb1ad8bf26/aiohttp/client.py#L578-L580\r\n```python\r\nparsed_url = URL(\r\n r_url, encoded=not self._requote_redirect_url\r\n)\r\n```\r\nwhich does not unquote `%27`:\r\n```python\r\nIn [8]: url\r\nOut[8]: 'https://netloc/path?param=param%27%27value'\r\n\r\nIn [9]: str(URL(url, encoded=True))\r\nOut[9]: 'https://netloc/path?param=param%27%27value'\r\n```", "See the issues we opened in the respective libraries:\r\n- aiohttp\r\n - aio-libs/yarl#1077\r\n- requests\r\n - psf/requests#6341", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012399 / 0.011353 (0.001047) | 0.006388 / 0.011008 (-0.004620) | 0.134173 / 0.038508 (0.095665) | 0.037059 / 0.023109 (0.013949) | 0.420697 / 0.275898 (0.144799) | 0.473981 / 0.323480 (0.150502) | 0.009857 / 0.007986 (0.001871) | 0.004791 / 0.004328 (0.000463) | 0.106886 / 0.004250 (0.102636) | 0.044871 / 0.037052 (0.007818) | 0.429843 / 0.258489 (0.171354) | 0.461569 / 0.293841 (0.167728) | 0.057285 / 0.128546 (-0.071261) | 0.018809 / 0.075646 (-0.056837) | 0.432613 / 0.419271 (0.013342) | 0.058086 / 0.043533 (0.014553) | 0.413064 / 0.255139 (0.157925) | 0.444407 / 0.283200 (0.161207) | 0.119102 / 0.141683 (-0.022581) | 1.875954 / 1.452155 (0.423799) | 1.916392 / 1.492716 (0.423676) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267489 / 0.018006 (0.249483) | 0.567554 / 0.000490 (0.567064) | 0.005901 / 0.000200 (0.005701) | 0.000134 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031248 / 0.037411 (-0.006164) | 0.123014 / 0.014526 (0.108489) | 0.140001 / 0.176557 (-0.036556) | 0.191476 / 0.737135 (-0.545659) | 0.141687 / 0.296338 (-0.154652) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.637481 / 0.215209 (0.422272) | 6.255969 / 2.077655 (4.178314) | 2.559811 / 1.504120 (1.055691) | 2.118154 / 1.541195 (0.576960) | 2.079487 / 1.468490 (0.610997) | 1.201079 / 4.584777 (-3.383698) | 5.592625 / 3.745712 (1.846913) | 5.143344 / 5.269862 (-0.126517) | 2.764716 / 4.565676 (-1.800960) | 0.142539 / 0.424275 (-0.281736) | 0.015541 / 0.007607 (0.007934) | 0.771407 / 0.226044 (0.545363) | 7.631657 / 2.268929 (5.362728) | 3.279684 / 55.444624 (-52.164940) | 2.587566 / 6.876477 (-4.288911) | 2.624622 / 2.142072 (0.482549) | 1.427878 / 4.805227 (-3.377350) | 0.257759 / 6.500664 (-6.242906) | 0.078616 / 0.075469 (0.003147) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.609305 / 1.841788 (-0.232483) | 18.258792 / 8.074308 (10.184484) | 20.345242 / 10.191392 (10.153850) | 0.267366 / 0.680424 (-0.413058) | 0.047035 / 0.534201 (-0.487166) | 0.568881 / 0.579283 (-0.010402) | 0.662763 / 0.434364 (0.228399) | 0.668927 / 0.540337 (0.128590) | 0.755766 / 1.386936 (-0.631170) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010017 / 0.011353 (-0.001336) | 0.006816 / 0.011008 (-0.004192) | 0.105038 / 0.038508 (0.066529) | 0.038689 / 0.023109 (0.015580) | 0.482113 / 0.275898 (0.206215) | 0.540072 / 0.323480 (0.216592) | 0.007738 / 0.007986 (-0.000248) | 0.005134 / 0.004328 (0.000806) | 0.102203 / 0.004250 (0.097953) | 0.054080 / 0.037052 (0.017028) | 0.501057 / 0.258489 (0.242568) | 0.567186 / 0.293841 (0.273345) | 0.060330 / 0.128546 (-0.068217) | 0.020059 / 0.075646 (-0.055587) | 0.123102 / 0.419271 (-0.296170) | 0.063426 / 0.043533 (0.019893) | 0.494171 / 0.255139 (0.239032) | 0.538238 / 0.283200 (0.255039) | 0.119613 / 0.141683 (-0.022069) | 1.853728 / 1.452155 (0.401574) | 1.984621 / 1.492716 (0.491904) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282511 / 0.018006 (0.264505) | 0.563190 / 0.000490 (0.562700) | 0.000465 / 0.000200 (0.000265) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029267 / 0.037411 (-0.008144) | 0.135618 / 0.014526 (0.121093) | 0.146286 / 0.176557 (-0.030271) | 0.188570 / 0.737135 (-0.548565) | 0.155839 / 0.296338 (-0.140499) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671660 / 0.215209 (0.456451) | 6.718775 / 2.077655 (4.641120) | 3.004601 / 1.504120 (1.500481) | 2.640504 / 1.541195 (1.099309) | 2.666788 / 1.468490 (1.198298) | 1.242655 / 4.584777 (-3.342122) | 5.780119 / 3.745712 (2.034407) | 3.247935 / 5.269862 (-2.021927) | 2.114007 / 4.565676 (-2.451669) | 0.147546 / 0.424275 (-0.276729) | 0.014408 / 0.007607 (0.006801) | 0.824407 / 0.226044 (0.598362) | 8.278185 / 2.268929 (6.009257) | 3.733463 / 55.444624 (-51.711161) | 2.976732 / 6.876477 (-3.899745) | 3.132758 / 2.142072 (0.990686) | 1.446095 / 4.805227 (-3.359132) | 0.258628 / 6.500664 (-6.242036) | 0.085513 / 0.075469 (0.010043) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.702681 / 1.841788 (-0.139106) | 18.725123 / 8.074308 (10.650815) | 19.622808 / 10.191392 (9.431416) | 0.215845 / 0.680424 (-0.464579) | 0.029246 / 0.534201 (-0.504955) | 0.554819 / 0.579283 (-0.024464) | 0.630926 / 0.434364 (0.196562) | 0.637663 / 0.540337 (0.097325) | 0.837948 / 1.386936 (-0.548988) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4a4f96ef0a4ec4b25f0872f160fa1eb9d2e711c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008540 / 0.011353 (-0.002813) | 0.004538 / 0.011008 (-0.006470) | 0.101507 / 0.038508 (0.062999) | 0.029751 / 0.023109 (0.006641) | 0.292608 / 0.275898 (0.016710) | 0.354734 / 0.323480 (0.031254) | 0.007430 / 0.007986 (-0.000556) | 0.003365 / 0.004328 (-0.000964) | 0.078703 / 0.004250 (0.074452) | 0.034858 / 0.037052 (-0.002194) | 0.303518 / 0.258489 (0.045029) | 0.336523 / 0.293841 (0.042682) | 0.033741 / 0.128546 (-0.094805) | 0.011460 / 0.075646 (-0.064186) | 0.319551 / 0.419271 (-0.099721) | 0.041102 / 0.043533 (-0.002431) | 0.295914 / 0.255139 (0.040775) | 0.322142 / 0.283200 (0.038943) | 0.084694 / 0.141683 (-0.056989) | 1.481308 / 1.452155 (0.029153) | 1.530271 / 1.492716 (0.037554) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.180516 / 0.018006 (0.162510) | 0.405741 / 0.000490 (0.405251) | 0.002806 / 0.000200 (0.002606) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023359 / 0.037411 (-0.014052) | 0.096950 / 0.014526 (0.082424) | 0.103991 / 0.176557 (-0.072566) | 0.143700 / 0.737135 (-0.593435) | 0.106764 / 0.296338 (-0.189575) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416966 / 0.215209 (0.201757) | 4.145601 / 2.077655 (2.067946) | 1.838258 / 1.504120 (0.334139) | 1.629396 / 1.541195 (0.088201) | 1.649707 / 1.468490 (0.181217) | 0.689624 / 4.584777 (-3.895153) | 3.414584 / 3.745712 (-0.331129) | 1.874295 / 5.269862 (-3.395566) | 1.251930 / 4.565676 (-3.313746) | 0.081782 / 0.424275 (-0.342493) | 0.012868 / 0.007607 (0.005261) | 0.523904 / 0.226044 (0.297859) | 5.251032 / 2.268929 (2.982104) | 2.301549 / 55.444624 (-53.143075) | 1.942110 / 6.876477 (-4.934367) | 2.023014 / 2.142072 (-0.119058) | 0.816492 / 4.805227 (-3.988736) | 0.150107 / 6.500664 (-6.350558) | 0.065118 / 0.075469 (-0.010351) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226433 / 1.841788 (-0.615355) | 13.852569 / 8.074308 (5.778261) | 13.862779 / 10.191392 (3.671387) | 0.146361 / 0.680424 (-0.534062) | 0.028652 / 0.534201 (-0.505549) | 0.398251 / 0.579283 (-0.181032) | 0.403590 / 0.434364 (-0.030774) | 0.492184 / 0.540337 (-0.048154) | 0.581040 / 1.386936 (-0.805896) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006859 / 0.011353 (-0.004494) | 0.004632 / 0.011008 (-0.006376) | 0.076653 / 0.038508 (0.038145) | 0.027865 / 0.023109 (0.004755) | 0.354472 / 0.275898 (0.078573) | 0.385462 / 0.323480 (0.061982) | 0.005125 / 0.007986 (-0.002861) | 0.003420 / 0.004328 (-0.000909) | 0.076018 / 0.004250 (0.071768) | 0.040197 / 0.037052 (0.003144) | 0.353675 / 0.258489 (0.095186) | 0.394911 / 0.293841 (0.101070) | 0.032909 / 0.128546 (-0.095637) | 0.011713 / 0.075646 (-0.063933) | 0.085921 / 0.419271 (-0.333350) | 0.044462 / 0.043533 (0.000929) | 0.349997 / 0.255139 (0.094858) | 0.375207 / 0.283200 (0.092008) | 0.091288 / 0.141683 (-0.050394) | 1.536515 / 1.452155 (0.084361) | 1.581878 / 1.492716 (0.089162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.273284 / 0.018006 (0.255277) | 0.424457 / 0.000490 (0.423967) | 0.044659 / 0.000200 (0.044459) | 0.000247 / 0.000054 (0.000192) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025473 / 0.037411 (-0.011938) | 0.100014 / 0.014526 (0.085488) | 0.108551 / 0.176557 (-0.068006) | 0.147913 / 0.737135 (-0.589223) | 0.112729 / 0.296338 (-0.183610) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448162 / 0.215209 (0.232953) | 4.472701 / 2.077655 (2.395046) | 2.078384 / 1.504120 (0.574264) | 1.861292 / 1.541195 (0.320097) | 1.920482 / 1.468490 (0.451991) | 0.706968 / 4.584777 (-3.877809) | 3.433109 / 3.745712 (-0.312603) | 1.898684 / 5.269862 (-3.371178) | 1.174375 / 4.565676 (-3.391302) | 0.083666 / 0.424275 (-0.340609) | 0.012388 / 0.007607 (0.004781) | 0.546011 / 0.226044 (0.319966) | 5.487514 / 2.268929 (3.218585) | 2.534124 / 55.444624 (-52.910500) | 2.168441 / 6.876477 (-4.708036) | 2.203458 / 2.142072 (0.061386) | 0.813333 / 4.805227 (-3.991894) | 0.153169 / 6.500664 (-6.347495) | 0.067151 / 0.075469 (-0.008318) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277815 / 1.841788 (-0.563972) | 13.920545 / 8.074308 (5.846237) | 13.473801 / 10.191392 (3.282409) | 0.129035 / 0.680424 (-0.551389) | 0.016737 / 0.534201 (-0.517464) | 0.388413 / 0.579283 (-0.190870) | 0.388785 / 0.434364 (-0.045579) | 0.481735 / 0.540337 (-0.058602) | 0.576390 / 1.386936 (-0.810546) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4a4f96ef0a4ec4b25f0872f160fa1eb9d2e711c \"CML watermark\")\n" ]
2023-01-24T17:18:59
2024-09-01T18:08:31
2023-01-31T08:37:54
The library `aiohttp` performs a requoting of redirection URLs that unquotes the single quotation mark character: `%27` => `'` This is a problem for our Hugging Face Hub, which requires exact URL from location header. Specifically, in the query component of the URL (`https://netloc/path?query`), the value for `response-content-disposition` contains `%27`: ``` response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27sample.jsonl.gz%3B+filename%3D%22sample.jsonl.gz%22%3B ``` and after the requoting, the `%27` characters get unquoted to `'`: ``` response-content-disposition=attachment%3B+filename*%3DUTF-8''sample.jsonl.gz%3B+filename%3D%22sample.jsonl.gz%22%3B ``` This PR disables the `aiohttp` requoting of redirection URLs.
albertvillanova
https://github.com/huggingface/datasets/pull/5459
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5459", "html_url": "https://github.com/huggingface/datasets/pull/5459", "diff_url": "https://github.com/huggingface/datasets/pull/5459.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5459.patch", "merged_at": "2023-01-31T08:37:54" }
true
1,555,054,737
5,458
slice split while streaming
closed
[ "Hi! Yes, that's correct. When `streaming` is `True`, only split names can be specified as `split`, and for slicing, you have to use `.skip`/`.take` instead.\r\n\r\nE.g. \r\n`load_dataset(\"lhoestq/demo1\",revision=None, streaming=True, split=\"train[:3]\")`\r\n\r\nrewritten with `.skip`/`.take`:\r\n`load_dataset(\"lhoestq/demo1\",revision=None, streaming=True, split=\"train\").take(3)`\r\n\r\n\r\n", "Thank you for your quick response!" ]
2023-01-24T14:08:17
2023-01-24T15:11:47
2023-01-24T15:11:47
### Describe the bug When using the `load_dataset` function with streaming set to True, slicing splits is apparently not supported. Did I miss this in the documentation? ### Steps to reproduce the bug `load_dataset("lhoestq/demo1",revision=None, streaming=True, split="train[:3]")` causes ValueError: Bad split: train[:3]. Available splits: ['train', 'test'] in builder.py, line 1213, in as_streaming_dataset ### Expected behavior The first 3 entries of the dataset as a stream ### Environment info - `datasets` version: 2.8.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.10.9 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
SvenDS9
https://github.com/huggingface/datasets/issues/5458
null
false
1,554,171,264
5,457
prebuilt dataset relies on `downloads/extracted`
open
[ "Hi! \r\n\r\nThis issue is due to our audio/image datasets not being self-contained. This allows us to save disk space (files are written only once) but also leads to the issues like this one. We plan to make all our datasets self-contained in Datasets 3.0.\r\n\r\nIn the meantime, you can run the following map to ensure your dataset is self-contained:\r\n```python\r\nfrom datasets.table import embed_table_storage\r\n# load_dataset ...\r\ndset = dset.with_format(\"arrow\")\r\ndset.map(embed_table_storage, batched=True)\r\ndset = dset.with_format(\"python\")\r\n```\r\n", "Understood. Thank you, Mario.\r\n\r\nPerhaps the solution could be very simple - move the extracted files into the directory of the cached dataset? Which would make it self-contained already and won't require waiting for a new major release. Unless I'm missing some back-compat nuance.\r\n\r\nBut regardless if X relies on Y - it could check if Y is still there when loading X. so not checking full consistency but just the top-level directory it relies on.", "Hello, \r\n\r\nI also face some problem with prebuilt dataset that relies on the same directory on \r\n\r\n`.cache\\\\huggingface\\\\datasets\\\\downloads\\\\extracted\\\\b557ce52f22c65030869d849d199d7b3fd5af18b335143729c717d29f6221baa\\\\ADEChallengeData2016\\\\annotations\\\\training\\\\ADE_train_00000023.png'`\r\n\r\nThe images exist but the training function somehow cannot reached it. Is this also related to the same problem?\r\n\r\nCurrently the directory map looked like this:\r\n```\r\n\r\n> (hf-pretrain38) C:\\Users\\Len\\.cache\\huggingface>tree\r\n> Folder PATH listing\r\n> C:.\r\n> โ”œโ”€โ”€โ”€datasets\r\n> โ”‚ โ”œโ”€โ”€โ”€downloads\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€extracted\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€64c6a0967481dbc192dceabeac06c02b47b992a106357d49e1916dfcdc23a2ea\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€release_test\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€testing\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€b557ce52f22c65030869d849d199d7b3fd5af18b335143729c717d29f6221baa\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€ADEChallengeData2016\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€annotations\r\n> โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€โ”€training\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€validation\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€images\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€training\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€validation\r\n> โ”‚ โ”œโ”€โ”€โ”€parquet\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€yelp_review_full-66f1f8c8d1a2da02\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€0.0.0\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€14a00e99c0d15a23649d0db8944380ac81082d4b021f398733dd84f3a6c569a7\r\n> โ”‚ โ””โ”€โ”€โ”€scene_parse_150\r\n> โ”‚ โ””โ”€โ”€โ”€scene_parsing\r\n> โ”‚ โ””โ”€โ”€โ”€1.0.0\r\n> โ”‚ โ””โ”€โ”€โ”€d998c54e1b5c5bad12b4d2ec7e1a5f74eee4c153bc1b089a0001677ae9b3fd75\r\n> โ”œโ”€โ”€โ”€evaluate\r\n> โ”‚ โ””โ”€โ”€โ”€downloads\r\n> โ”œโ”€โ”€โ”€hub\r\n> โ”‚ โ”œโ”€โ”€โ”€.locks\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€datasets--scene_parse_150\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€models--facebook--mask2former-swin-large-cityscapes-instance\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€models--facebook--mask2former-swin-large-cityscapes-panoptic\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€models--nvidia--mit-b0\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€models--nvidia--segformer-b1-finetuned-cityscapes-1024-1024\r\n> โ”‚ โ”œโ”€โ”€โ”€datasets--huggingface--label-files\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€9462154cba99c3c7f569d3b4f1ba26614afd558c\r\n> โ”‚ โ”œโ”€โ”€โ”€datasets--scene_parse_150\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€.no_exist\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€ac1c0c0e23875e74cd77aca0fd725fd6a35c3667\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€ac1c0c0e23875e74cd77aca0fd725fd6a35c3667\r\n> โ”‚ โ”œโ”€โ”€โ”€models--bert-base-cased\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€.no_exist\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€cd5ef92a9fb2f889e972770a36d4ed042daf221e\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€cd5ef92a9fb2f889e972770a36d4ed042daf221e\r\n> โ”‚ โ”œโ”€โ”€โ”€models--bert-case-cased\r\n> โ”‚ โ”œโ”€โ”€โ”€models--facebook--detr-resnet-50-panoptic\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€d53b52a799403a8867920f82c869e40732b47037\r\n> โ”‚ โ”œโ”€โ”€โ”€models--facebook--mask2former-swin-base-coco-panoptic\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€8351ef9576a965d65196da91a5015dcaf6c6b5d2\r\n> โ”‚ โ”œโ”€โ”€โ”€models--facebook--mask2former-swin-large-cityscapes-instance\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€70fed72d02a138560da931a1c6a2dcfbb56cd2ff\r\n> โ”‚ โ”œโ”€โ”€โ”€models--facebook--mask2former-swin-large-cityscapes-panoptic\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€544d76fe93971ee046dacae19b6d4f6ecb5d9088\r\n> โ”‚ โ”œโ”€โ”€โ”€models--google_bert--bert-base-cased\r\n> โ”‚ โ”œโ”€โ”€โ”€models--nvidia--mit-b0\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€.no_exist\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€80983a413c30d36a39c20203974ae7807835e2b4\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€pr\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€25ce79d97e6d9d509ed12e17cb2eb89b0a83a2dc\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€80983a413c30d36a39c20203974ae7807835e2b4\r\n> โ”‚ โ”œโ”€โ”€โ”€models--nvidia--segformer-b0-finetuned-cityscapes-768-768\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€d3b7801ed329668d5bff04cd33365fa37f538c3b\r\n> โ”‚ โ””โ”€โ”€โ”€models--nvidia--segformer-b1-finetuned-cityscapes-1024-1024\r\n> โ”‚ โ”œโ”€โ”€โ”€.no_exist\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€ec86afeba68e656629ccf47e0c8d2902f964917b\r\n> โ”‚ โ”œโ”€โ”€โ”€blobs\r\n> โ”‚ โ”œโ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€refs\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€pr\r\n> โ”‚ โ””โ”€โ”€โ”€snapshots\r\n> โ”‚ โ”œโ”€โ”€โ”€ad2bb0101129289844ea62577e6a22adc2752004\r\n> โ”‚ โ””โ”€โ”€โ”€ec86afeba68e656629ccf47e0c8d2902f964917b\r\n> โ”œโ”€โ”€โ”€metrics\r\n> โ”‚ โ””โ”€โ”€โ”€mean_io_u\r\n> โ”‚ โ””โ”€โ”€โ”€default\r\n> โ””โ”€โ”€โ”€modules\r\n> โ”œโ”€โ”€โ”€datasets_modules\r\n> โ”‚ โ”œโ”€โ”€โ”€datasets\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€scene_parse_150\r\n> โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€โ”€d998c54e1b5c5bad12b4d2ec7e1a5f74eee4c153bc1b089a0001677ae9b3fd75\r\n> โ”‚ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€__pycache__\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€__pycache__\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€__pycache__\r\n> โ”‚ โ””โ”€โ”€โ”€__pycache__\r\n> โ””โ”€โ”€โ”€evaluate_modules\r\n> โ”œโ”€โ”€โ”€metrics\r\n> โ”‚ โ”œโ”€โ”€โ”€evaluate-metric--mean_iou\r\n> โ”‚ โ”‚ โ”œโ”€โ”€โ”€9e450724f21f05592bfb0255fe2fa576df8171fa060d11121d8aecfff0db80d0\r\n> โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€__pycache__\r\n> โ”‚ โ”‚ โ””โ”€โ”€โ”€__pycache__\r\n> โ”‚ โ””โ”€โ”€โ”€__pycache__\r\n> โ””โ”€โ”€โ”€__pycache__\r\n```\r\n\r\nWill appreciate for some help and will help in completing further details, thanks in advance" ]
2023-01-24T02:09:32
2024-11-18T07:43:51
null
### Describe the bug I pre-built the dataset: ``` python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing ``` and it can be used just fine. now I wipe out `downloads/extracted` and it no longer works. ``` rm -r ~/.cache/huggingface/datasets/downloads ``` That is I can still load it: ``` python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing No config specified, defaulting to: general-pmd-synthetic-testing/100.unique Found cached dataset general-pmd-synthetic-testing (/home/stas/.cache/huggingface/datasets/HuggingFaceM4___general-pmd-synthetic-testing/100.unique/1.1.1/86bc445e3e48cb5ef79de109eb4e54ff85b318cd55c3835c4ee8f86eae33d9d2) ``` but if I try to use it: ``` E stderr: Traceback (most recent call last): E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/main.py", line 116, in <module> E stderr: train_loader, val_loader = get_dataloaders( E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/dataset.py", line 170, in get_dataloaders E stderr: train_loader = get_dataloader_from_config( E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/dataset.py", line 443, in get_dataloader_from_config E stderr: dataloader = get_dataloader( E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/dataset.py", line 264, in get_dataloader E stderr: is_pmd = "meta" in hf_dataset[0] and "source" in hf_dataset[0] E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/arrow_dataset.py", line 2601, in __getitem__ E stderr: return self._getitem( E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/arrow_dataset.py", line 2586, in _getitem E stderr: formatted_output = format_table( E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 634, in format_table E stderr: return formatter(pa_table, query_type=query_type) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 406, in __call__ E stderr: return self.format_row(pa_table) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 442, in format_row E stderr: row = self.python_features_decoder.decode_row(row) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 225, in decode_row E stderr: return self.features.decode_example(row) if self.features else row E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1846, in decode_example E stderr: return { E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1847, in <dictcomp> E stderr: column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1304, in decode_nested_example E stderr: return decode_nested_example([schema.feature], obj) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1296, in decode_nested_example E stderr: if decode_nested_example(sub_schema, first_elmt) != first_elmt: E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1309, in decode_nested_example E stderr: return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/image.py", line 144, in decode_example E stderr: image = PIL.Image.open(path) E stderr: File "/home/stas/anaconda3/envs/py38-pt113/lib/python3.8/site-packages/PIL/Image.py", line 3092, in open E stderr: fp = builtins.open(filename, "rb") E stderr: FileNotFoundError: [Errno 2] No such file or directory: '/mnt/nvme0/code/data/cache/huggingface/datasets/downloads/extracted/134227b9b94c4eccf19b205bf3021d4492d0227b9be6c2ddb6bf517d8d55a8cb/data/101/images_01.jpg' ``` Only if I wipe out the cached dir and rebuild then it starts working as `download/extracted` is back again with extracted files. ``` rm -r ~/.cache/huggingface/datasets/HuggingFaceM4___general-pmd-synthetic-testing python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing ``` I think there are 2 issues here: 1. why does it still rely on extracted files after `arrow` files were printed - did I do something incorrectly when creating this dataset? 2. why doesn't the dataset know that it has been gutted and loads just fine? If it has a dependency on `download/extracted` then `load_dataset` should check if it's there and fail or force rebuilding. I am sure this could be a very expensive operation, so probably really solving #1 will not require this check. and this second item is probably an overkill. Other than perhaps if it had an optional `check_consistency` flag to do that. ### Environment info datasets@main
stas00
https://github.com/huggingface/datasets/issues/5457
null
false
1,553,905,148
5,456
feat: tqdm for `to_parquet`
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012395 / 0.011353 (0.001042) | 0.006466 / 0.011008 (-0.004542) | 0.127605 / 0.038508 (0.089097) | 0.044929 / 0.023109 (0.021820) | 0.399856 / 0.275898 (0.123958) | 0.491341 / 0.323480 (0.167861) | 0.009193 / 0.007986 (0.001207) | 0.005419 / 0.004328 (0.001090) | 0.100577 / 0.004250 (0.096327) | 0.045338 / 0.037052 (0.008286) | 0.409970 / 0.258489 (0.151481) | 0.452941 / 0.293841 (0.159100) | 0.054350 / 0.128546 (-0.074197) | 0.019069 / 0.075646 (-0.056578) | 0.427036 / 0.419271 (0.007765) | 0.073616 / 0.043533 (0.030083) | 0.395384 / 0.255139 (0.140245) | 0.442381 / 0.283200 (0.159181) | 0.123185 / 0.141683 (-0.018498) | 1.797640 / 1.452155 (0.345485) | 1.888860 / 1.492716 (0.396143) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211041 / 0.018006 (0.193035) | 0.539350 / 0.000490 (0.538860) | 0.001683 / 0.000200 (0.001483) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031699 / 0.037411 (-0.005712) | 0.132696 / 0.014526 (0.118170) | 0.133710 / 0.176557 (-0.042846) | 0.190074 / 0.737135 (-0.547061) | 0.142919 / 0.296338 (-0.153420) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.643521 / 0.215209 (0.428312) | 6.137350 / 2.077655 (4.059695) | 2.463894 / 1.504120 (0.959774) | 2.120043 / 1.541195 (0.578848) | 2.121898 / 1.468490 (0.653408) | 1.287319 / 4.584777 (-3.297458) | 5.517864 / 3.745712 (1.772151) | 5.070820 / 5.269862 (-0.199042) | 2.948967 / 4.565676 (-1.616710) | 0.175861 / 0.424275 (-0.248415) | 0.015292 / 0.007607 (0.007685) | 0.843195 / 0.226044 (0.617150) | 7.884275 / 2.268929 (5.615347) | 3.182821 / 55.444624 (-52.261803) | 2.576093 / 6.876477 (-4.300384) | 2.537160 / 2.142072 (0.395088) | 1.510029 / 4.805227 (-3.295198) | 0.249404 / 6.500664 (-6.251260) | 0.080434 / 0.075469 (0.004965) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.618695 / 1.841788 (-0.223093) | 18.879207 / 8.074308 (10.804899) | 21.075272 / 10.191392 (10.883880) | 0.260781 / 0.680424 (-0.419643) | 0.046387 / 0.534201 (-0.487813) | 0.570709 / 0.579283 (-0.008574) | 0.619050 / 0.434364 (0.184686) | 0.642295 / 0.540337 (0.101958) | 0.780070 / 1.386936 (-0.606866) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010418 / 0.011353 (-0.000935) | 0.006104 / 0.011008 (-0.004905) | 0.133609 / 0.038508 (0.095101) | 0.035101 / 0.023109 (0.011992) | 0.471931 / 0.275898 (0.196033) | 0.504498 / 0.323480 (0.181018) | 0.007388 / 0.007986 (-0.000598) | 0.004852 / 0.004328 (0.000523) | 0.094535 / 0.004250 (0.090284) | 0.056832 / 0.037052 (0.019779) | 0.470513 / 0.258489 (0.212024) | 0.531285 / 0.293841 (0.237444) | 0.058271 / 0.128546 (-0.070276) | 0.020523 / 0.075646 (-0.055123) | 0.437398 / 0.419271 (0.018126) | 0.065390 / 0.043533 (0.021857) | 0.503702 / 0.255139 (0.248563) | 0.515876 / 0.283200 (0.232677) | 0.118615 / 0.141683 (-0.023068) | 1.865380 / 1.452155 (0.413225) | 1.990316 / 1.492716 (0.497600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246772 / 0.018006 (0.228766) | 0.560607 / 0.000490 (0.560118) | 0.005675 / 0.000200 (0.005475) | 0.000142 / 0.000054 (0.000088) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034692 / 0.037411 (-0.002719) | 0.174016 / 0.014526 (0.159490) | 0.179838 / 0.176557 (0.003282) | 0.217118 / 0.737135 (-0.520018) | 0.184811 / 0.296338 (-0.111527) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.675970 / 0.215209 (0.460760) | 6.787039 / 2.077655 (4.709384) | 2.932619 / 1.504120 (1.428499) | 2.545076 / 1.541195 (1.003882) | 2.566705 / 1.468490 (1.098215) | 1.287365 / 4.584777 (-3.297412) | 5.468441 / 3.745712 (1.722729) | 5.227726 / 5.269862 (-0.042136) | 2.868970 / 4.565676 (-1.696706) | 0.153535 / 0.424275 (-0.270740) | 0.020087 / 0.007607 (0.012480) | 0.860562 / 0.226044 (0.634518) | 8.656109 / 2.268929 (6.387180) | 3.749424 / 55.444624 (-51.695200) | 3.011337 / 6.876477 (-3.865139) | 3.119045 / 2.142072 (0.976973) | 1.562174 / 4.805227 (-3.243053) | 0.279161 / 6.500664 (-6.221504) | 0.084905 / 0.075469 (0.009436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.638684 / 1.841788 (-0.203104) | 18.834760 / 8.074308 (10.760452) | 21.554310 / 10.191392 (11.362918) | 0.274518 / 0.680424 (-0.405906) | 0.030343 / 0.534201 (-0.503858) | 0.539094 / 0.579283 (-0.040189) | 0.627258 / 0.434364 (0.192895) | 0.624638 / 0.540337 (0.084301) | 0.742776 / 1.386936 (-0.644160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#98c9b27be45e1f5bc8c18d8bb2414478efe68055 \"CML watermark\")\n" ]
2023-01-23T22:05:38
2023-01-24T11:26:47
2023-01-24T11:17:12
As described in #5418 I noticed also that the `to_json` function supports multi-workers whereas `to_parquet`, is that not possible/not needed with Parquet or something that hasn't been implemented yet?
zanussbaum
https://github.com/huggingface/datasets/pull/5456
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5456", "html_url": "https://github.com/huggingface/datasets/pull/5456", "diff_url": "https://github.com/huggingface/datasets/pull/5456.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5456.patch", "merged_at": "2023-01-24T11:17:12" }
true
1,553,040,080
5,455
Single TQDM bar in multi-proc map
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008372 / 0.011353 (-0.002981) | 0.004658 / 0.011008 (-0.006350) | 0.102005 / 0.038508 (0.063497) | 0.029030 / 0.023109 (0.005920) | 0.296968 / 0.275898 (0.021070) | 0.364898 / 0.323480 (0.041418) | 0.006899 / 0.007986 (-0.001087) | 0.003410 / 0.004328 (-0.000919) | 0.079705 / 0.004250 (0.075455) | 0.034265 / 0.037052 (-0.002787) | 0.305695 / 0.258489 (0.047206) | 0.343275 / 0.293841 (0.049434) | 0.033783 / 0.128546 (-0.094763) | 0.011604 / 0.075646 (-0.064042) | 0.322577 / 0.419271 (-0.096694) | 0.040540 / 0.043533 (-0.002993) | 0.299176 / 0.255139 (0.044037) | 0.333157 / 0.283200 (0.049957) | 0.087460 / 0.141683 (-0.054223) | 1.494392 / 1.452155 (0.042237) | 1.539580 / 1.492716 (0.046863) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.176206 / 0.018006 (0.158200) | 0.413702 / 0.000490 (0.413212) | 0.002625 / 0.000200 (0.002425) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023886 / 0.037411 (-0.013525) | 0.099758 / 0.014526 (0.085232) | 0.104349 / 0.176557 (-0.072208) | 0.147138 / 0.737135 (-0.589998) | 0.108682 / 0.296338 (-0.187657) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411957 / 0.215209 (0.196748) | 4.110004 / 2.077655 (2.032349) | 1.820951 / 1.504120 (0.316831) | 1.629726 / 1.541195 (0.088532) | 1.672573 / 1.468490 (0.204083) | 0.686627 / 4.584777 (-3.898150) | 3.382665 / 3.745712 (-0.363047) | 2.875908 / 5.269862 (-2.393954) | 1.475331 / 4.565676 (-3.090345) | 0.081353 / 0.424275 (-0.342922) | 0.012521 / 0.007607 (0.004914) | 0.516226 / 0.226044 (0.290182) | 5.157658 / 2.268929 (2.888729) | 2.302012 / 55.444624 (-53.142612) | 1.950831 / 6.876477 (-4.925646) | 1.962081 / 2.142072 (-0.179992) | 0.800007 / 4.805227 (-4.005221) | 0.148462 / 6.500664 (-6.352202) | 0.064448 / 0.075469 (-0.011021) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.227977 / 1.841788 (-0.613810) | 13.776087 / 8.074308 (5.701779) | 13.749825 / 10.191392 (3.558433) | 0.137034 / 0.680424 (-0.543390) | 0.028461 / 0.534201 (-0.505740) | 0.392335 / 0.579283 (-0.186948) | 0.397404 / 0.434364 (-0.036960) | 0.450831 / 0.540337 (-0.089507) | 0.533716 / 1.386936 (-0.853220) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006883 / 0.011353 (-0.004470) | 0.004625 / 0.011008 (-0.006383) | 0.099039 / 0.038508 (0.060531) | 0.028068 / 0.023109 (0.004958) | 0.419988 / 0.275898 (0.144090) | 0.449543 / 0.323480 (0.126063) | 0.005232 / 0.007986 (-0.002753) | 0.003527 / 0.004328 (-0.000801) | 0.076308 / 0.004250 (0.072057) | 0.040523 / 0.037052 (0.003471) | 0.420165 / 0.258489 (0.161676) | 0.463220 / 0.293841 (0.169379) | 0.032368 / 0.128546 (-0.096178) | 0.011784 / 0.075646 (-0.063863) | 0.320675 / 0.419271 (-0.098597) | 0.041861 / 0.043533 (-0.001672) | 0.424903 / 0.255139 (0.169764) | 0.443528 / 0.283200 (0.160328) | 0.090869 / 0.141683 (-0.050814) | 1.504757 / 1.452155 (0.052602) | 1.557824 / 1.492716 (0.065108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224020 / 0.018006 (0.206014) | 0.404090 / 0.000490 (0.403601) | 0.000403 / 0.000200 (0.000203) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024556 / 0.037411 (-0.012855) | 0.101280 / 0.014526 (0.086754) | 0.108017 / 0.176557 (-0.068540) | 0.146679 / 0.737135 (-0.590456) | 0.111468 / 0.296338 (-0.184870) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478955 / 0.215209 (0.263746) | 4.769628 / 2.077655 (2.691973) | 2.473238 / 1.504120 (0.969118) | 2.263588 / 1.541195 (0.722393) | 2.285425 / 1.468490 (0.816935) | 0.699051 / 4.584777 (-3.885726) | 3.390495 / 3.745712 (-0.355217) | 1.858569 / 5.269862 (-3.411293) | 1.162081 / 4.565676 (-3.403596) | 0.083294 / 0.424275 (-0.340981) | 0.012410 / 0.007607 (0.004803) | 0.580786 / 0.226044 (0.354741) | 5.866868 / 2.268929 (3.597940) | 2.944358 / 55.444624 (-52.500266) | 2.596241 / 6.876477 (-4.280235) | 2.664464 / 2.142072 (0.522392) | 0.806751 / 4.805227 (-3.998476) | 0.152389 / 6.500664 (-6.348275) | 0.066945 / 0.075469 (-0.008524) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290545 / 1.841788 (-0.551243) | 14.005727 / 8.074308 (5.931419) | 14.478951 / 10.191392 (4.287559) | 0.127488 / 0.680424 (-0.552935) | 0.016929 / 0.534201 (-0.517272) | 0.378380 / 0.579283 (-0.200904) | 0.387499 / 0.434364 (-0.046865) | 0.440816 / 0.540337 (-0.099522) | 0.525794 / 1.386936 (-0.861142) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#07549c6fcb2dced59d7614b4b8264d54ef573407 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008704 / 0.011353 (-0.002649) | 0.004474 / 0.011008 (-0.006534) | 0.101720 / 0.038508 (0.063212) | 0.030426 / 0.023109 (0.007317) | 0.298944 / 0.275898 (0.023046) | 0.371491 / 0.323480 (0.048011) | 0.007042 / 0.007986 (-0.000944) | 0.003479 / 0.004328 (-0.000850) | 0.078086 / 0.004250 (0.073835) | 0.037014 / 0.037052 (-0.000038) | 0.312964 / 0.258489 (0.054475) | 0.351251 / 0.293841 (0.057410) | 0.033286 / 0.128546 (-0.095260) | 0.011468 / 0.075646 (-0.064179) | 0.321784 / 0.419271 (-0.097488) | 0.040700 / 0.043533 (-0.002832) | 0.303799 / 0.255139 (0.048660) | 0.336982 / 0.283200 (0.053782) | 0.089448 / 0.141683 (-0.052235) | 1.462430 / 1.452155 (0.010275) | 1.524448 / 1.492716 (0.031732) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178390 / 0.018006 (0.160384) | 0.402474 / 0.000490 (0.401984) | 0.002697 / 0.000200 (0.002497) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022679 / 0.037411 (-0.014733) | 0.097759 / 0.014526 (0.083234) | 0.105102 / 0.176557 (-0.071454) | 0.140720 / 0.737135 (-0.596415) | 0.109119 / 0.296338 (-0.187219) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414153 / 0.215209 (0.198944) | 4.131799 / 2.077655 (2.054144) | 1.852325 / 1.504120 (0.348205) | 1.646955 / 1.541195 (0.105760) | 1.662880 / 1.468490 (0.194390) | 0.693823 / 4.584777 (-3.890954) | 3.378843 / 3.745712 (-0.366869) | 1.861324 / 5.269862 (-3.408538) | 1.156916 / 4.565676 (-3.408761) | 0.082385 / 0.424275 (-0.341890) | 0.012166 / 0.007607 (0.004559) | 0.528690 / 0.226044 (0.302646) | 5.286388 / 2.268929 (3.017459) | 2.319941 / 55.444624 (-53.124684) | 1.959462 / 6.876477 (-4.917014) | 1.995102 / 2.142072 (-0.146970) | 0.817158 / 4.805227 (-3.988069) | 0.149479 / 6.500664 (-6.351185) | 0.065668 / 0.075469 (-0.009801) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.240228 / 1.841788 (-0.601560) | 13.770357 / 8.074308 (5.696048) | 13.940638 / 10.191392 (3.749246) | 0.152589 / 0.680424 (-0.527835) | 0.028498 / 0.534201 (-0.505703) | 0.392579 / 0.579283 (-0.186704) | 0.402843 / 0.434364 (-0.031521) | 0.455429 / 0.540337 (-0.084909) | 0.541090 / 1.386936 (-0.845846) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006692 / 0.011353 (-0.004661) | 0.004514 / 0.011008 (-0.006495) | 0.097058 / 0.038508 (0.058550) | 0.027780 / 0.023109 (0.004671) | 0.415806 / 0.275898 (0.139908) | 0.443079 / 0.323480 (0.119599) | 0.005181 / 0.007986 (-0.002805) | 0.003408 / 0.004328 (-0.000921) | 0.075263 / 0.004250 (0.071013) | 0.038169 / 0.037052 (0.001116) | 0.417292 / 0.258489 (0.158803) | 0.461875 / 0.293841 (0.168034) | 0.032280 / 0.128546 (-0.096266) | 0.011571 / 0.075646 (-0.064075) | 0.319091 / 0.419271 (-0.100181) | 0.048295 / 0.043533 (0.004762) | 0.423619 / 0.255139 (0.168480) | 0.435064 / 0.283200 (0.151864) | 0.094869 / 0.141683 (-0.046814) | 1.523000 / 1.452155 (0.070846) | 1.583097 / 1.492716 (0.090381) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214326 / 0.018006 (0.196320) | 0.391623 / 0.000490 (0.391134) | 0.004602 / 0.000200 (0.004403) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024306 / 0.037411 (-0.013106) | 0.101178 / 0.014526 (0.086652) | 0.108504 / 0.176557 (-0.068053) | 0.144114 / 0.737135 (-0.593022) | 0.111088 / 0.296338 (-0.185250) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472573 / 0.215209 (0.257364) | 4.748929 / 2.077655 (2.671274) | 2.441602 / 1.504120 (0.937482) | 2.238841 / 1.541195 (0.697647) | 2.303303 / 1.468490 (0.834813) | 0.696618 / 4.584777 (-3.888159) | 3.373867 / 3.745712 (-0.371845) | 2.809009 / 5.269862 (-2.460852) | 1.337240 / 4.565676 (-3.228437) | 0.082682 / 0.424275 (-0.341593) | 0.012834 / 0.007607 (0.005227) | 0.569686 / 0.226044 (0.343642) | 5.723407 / 2.268929 (3.454478) | 2.882944 / 55.444624 (-52.561680) | 2.543530 / 6.876477 (-4.332947) | 2.581856 / 2.142072 (0.439784) | 0.802353 / 4.805227 (-4.002874) | 0.149947 / 6.500664 (-6.350717) | 0.065865 / 0.075469 (-0.009604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.282146 / 1.841788 (-0.559642) | 13.831344 / 8.074308 (5.757036) | 14.081550 / 10.191392 (3.890157) | 0.141735 / 0.680424 (-0.538689) | 0.016677 / 0.534201 (-0.517524) | 0.378967 / 0.579283 (-0.200316) | 0.383775 / 0.434364 (-0.050589) | 0.432892 / 0.540337 (-0.107446) | 0.518042 / 1.386936 (-0.868894) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#01b4a5a18b56fa7b648b0f131f6b5568b1fd436a \"CML watermark\")\n", "Omg I love this ! cc @TevenLeScao @thomasw21 this will save your terminals from infinite streams of progress bars", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008680 / 0.011353 (-0.002673) | 0.004597 / 0.011008 (-0.006411) | 0.101154 / 0.038508 (0.062646) | 0.029831 / 0.023109 (0.006722) | 0.300619 / 0.275898 (0.024721) | 0.358259 / 0.323480 (0.034779) | 0.007284 / 0.007986 (-0.000701) | 0.003511 / 0.004328 (-0.000817) | 0.078805 / 0.004250 (0.074555) | 0.037192 / 0.037052 (0.000140) | 0.307241 / 0.258489 (0.048752) | 0.354648 / 0.293841 (0.060807) | 0.033696 / 0.128546 (-0.094851) | 0.011660 / 0.075646 (-0.063986) | 0.324266 / 0.419271 (-0.095006) | 0.043393 / 0.043533 (-0.000140) | 0.297503 / 0.255139 (0.042364) | 0.326037 / 0.283200 (0.042838) | 0.091165 / 0.141683 (-0.050517) | 1.479970 / 1.452155 (0.027816) | 1.508507 / 1.492716 (0.015791) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.179995 / 0.018006 (0.161989) | 0.464282 / 0.000490 (0.463793) | 0.003953 / 0.000200 (0.003753) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022696 / 0.037411 (-0.014715) | 0.099510 / 0.014526 (0.084984) | 0.103741 / 0.176557 (-0.072816) | 0.137837 / 0.737135 (-0.599299) | 0.108776 / 0.296338 (-0.187563) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417034 / 0.215209 (0.201825) | 4.183479 / 2.077655 (2.105824) | 1.855329 / 1.504120 (0.351209) | 1.660675 / 1.541195 (0.119481) | 1.723936 / 1.468490 (0.255446) | 0.687815 / 4.584777 (-3.896962) | 3.331280 / 3.745712 (-0.414432) | 2.821430 / 5.269862 (-2.448432) | 1.542394 / 4.565676 (-3.023283) | 0.081665 / 0.424275 (-0.342610) | 0.012483 / 0.007607 (0.004875) | 0.524758 / 0.226044 (0.298713) | 5.277285 / 2.268929 (3.008357) | 2.278067 / 55.444624 (-53.166557) | 1.923232 / 6.876477 (-4.953245) | 1.978645 / 2.142072 (-0.163428) | 0.806225 / 4.805227 (-3.999002) | 0.147568 / 6.500664 (-6.353096) | 0.064206 / 0.075469 (-0.011263) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.175079 / 1.841788 (-0.666708) | 13.677443 / 8.074308 (5.603135) | 14.064103 / 10.191392 (3.872711) | 0.167462 / 0.680424 (-0.512962) | 0.028677 / 0.534201 (-0.505524) | 0.399090 / 0.579283 (-0.180193) | 0.398930 / 0.434364 (-0.035433) | 0.461604 / 0.540337 (-0.078733) | 0.540978 / 1.386936 (-0.845958) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006846 / 0.011353 (-0.004507) | 0.004452 / 0.011008 (-0.006556) | 0.076169 / 0.038508 (0.037661) | 0.028290 / 0.023109 (0.005181) | 0.341105 / 0.275898 (0.065207) | 0.381465 / 0.323480 (0.057986) | 0.005038 / 0.007986 (-0.002948) | 0.003298 / 0.004328 (-0.001031) | 0.075794 / 0.004250 (0.071544) | 0.039225 / 0.037052 (0.002173) | 0.342995 / 0.258489 (0.084506) | 0.384878 / 0.293841 (0.091037) | 0.031766 / 0.128546 (-0.096780) | 0.011597 / 0.075646 (-0.064049) | 0.084849 / 0.419271 (-0.334423) | 0.041795 / 0.043533 (-0.001737) | 0.341770 / 0.255139 (0.086631) | 0.383142 / 0.283200 (0.099942) | 0.088854 / 0.141683 (-0.052829) | 1.465116 / 1.452155 (0.012961) | 1.566888 / 1.492716 (0.074171) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225129 / 0.018006 (0.207123) | 0.394290 / 0.000490 (0.393801) | 0.000397 / 0.000200 (0.000197) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025492 / 0.037411 (-0.011919) | 0.100494 / 0.014526 (0.085968) | 0.110587 / 0.176557 (-0.065969) | 0.142715 / 0.737135 (-0.594420) | 0.110962 / 0.296338 (-0.185376) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437240 / 0.215209 (0.222031) | 4.379191 / 2.077655 (2.301536) | 2.055059 / 1.504120 (0.550939) | 1.844643 / 1.541195 (0.303448) | 1.914678 / 1.468490 (0.446188) | 0.695607 / 4.584777 (-3.889170) | 3.353845 / 3.745712 (-0.391867) | 1.837403 / 5.269862 (-3.432459) | 1.155518 / 4.565676 (-3.410158) | 0.082753 / 0.424275 (-0.341523) | 0.012812 / 0.007607 (0.005205) | 0.537304 / 0.226044 (0.311260) | 5.387425 / 2.268929 (3.118497) | 2.506986 / 55.444624 (-52.937638) | 2.159031 / 6.876477 (-4.717445) | 2.187844 / 2.142072 (0.045772) | 0.796880 / 4.805227 (-4.008347) | 0.151850 / 6.500664 (-6.348815) | 0.067577 / 0.075469 (-0.007892) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257779 / 1.841788 (-0.584009) | 13.968842 / 8.074308 (5.894534) | 13.544220 / 10.191392 (3.352828) | 0.149962 / 0.680424 (-0.530462) | 0.016875 / 0.534201 (-0.517326) | 0.394714 / 0.579283 (-0.184570) | 0.387845 / 0.434364 (-0.046519) | 0.481674 / 0.540337 (-0.058664) | 0.569820 / 1.386936 (-0.817116) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#71e50283422a93e805ea76722ce2520d1aae39c2 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009745 / 0.011353 (-0.001607) | 0.005307 / 0.011008 (-0.005702) | 0.104230 / 0.038508 (0.065722) | 0.039745 / 0.023109 (0.016635) | 0.306102 / 0.275898 (0.030204) | 0.384390 / 0.323480 (0.060910) | 0.008265 / 0.007986 (0.000279) | 0.005516 / 0.004328 (0.001187) | 0.076023 / 0.004250 (0.071772) | 0.048266 / 0.037052 (0.011213) | 0.315380 / 0.258489 (0.056891) | 0.365735 / 0.293841 (0.071895) | 0.038222 / 0.128546 (-0.090324) | 0.012397 / 0.075646 (-0.063249) | 0.348964 / 0.419271 (-0.070307) | 0.047668 / 0.043533 (0.004135) | 0.301037 / 0.255139 (0.045898) | 0.322982 / 0.283200 (0.039783) | 0.109307 / 0.141683 (-0.032376) | 1.420777 / 1.452155 (-0.031378) | 1.468290 / 1.492716 (-0.024426) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.262386 / 0.018006 (0.244380) | 0.557151 / 0.000490 (0.556661) | 0.000352 / 0.000200 (0.000152) | 0.000062 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029508 / 0.037411 (-0.007903) | 0.113960 / 0.014526 (0.099434) | 0.123176 / 0.176557 (-0.053381) | 0.161928 / 0.737135 (-0.575207) | 0.129196 / 0.296338 (-0.167142) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407051 / 0.215209 (0.191842) | 4.072550 / 2.077655 (1.994895) | 1.899809 / 1.504120 (0.395689) | 1.751981 / 1.541195 (0.210786) | 1.841361 / 1.468490 (0.372871) | 0.713908 / 4.584777 (-3.870869) | 3.703339 / 3.745712 (-0.042373) | 2.091283 / 5.269862 (-3.178578) | 1.323810 / 4.565676 (-3.241866) | 0.084691 / 0.424275 (-0.339584) | 0.012685 / 0.007607 (0.005078) | 0.511301 / 0.226044 (0.285257) | 5.109741 / 2.268929 (2.840813) | 2.315073 / 55.444624 (-53.129551) | 2.012746 / 6.876477 (-4.863731) | 2.160074 / 2.142072 (0.018002) | 0.853025 / 4.805227 (-3.952202) | 0.165301 / 6.500664 (-6.335363) | 0.062244 / 0.075469 (-0.013225) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.219727 / 1.841788 (-0.622061) | 15.319675 / 8.074308 (7.245367) | 13.100883 / 10.191392 (2.909491) | 0.173451 / 0.680424 (-0.506973) | 0.029173 / 0.534201 (-0.505028) | 0.440162 / 0.579283 (-0.139122) | 0.429771 / 0.434364 (-0.004593) | 0.518689 / 0.540337 (-0.021648) | 0.608590 / 1.386936 (-0.778346) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007839 / 0.011353 (-0.003514) | 0.005409 / 0.011008 (-0.005599) | 0.076468 / 0.038508 (0.037960) | 0.036568 / 0.023109 (0.013459) | 0.337568 / 0.275898 (0.061670) | 0.379353 / 0.323480 (0.055873) | 0.006208 / 0.007986 (-0.001778) | 0.005971 / 0.004328 (0.001643) | 0.073765 / 0.004250 (0.069514) | 0.056609 / 0.037052 (0.019556) | 0.344578 / 0.258489 (0.086089) | 0.405249 / 0.293841 (0.111408) | 0.037652 / 0.128546 (-0.090894) | 0.012549 / 0.075646 (-0.063097) | 0.087086 / 0.419271 (-0.332186) | 0.056669 / 0.043533 (0.013136) | 0.334121 / 0.255139 (0.078983) | 0.354582 / 0.283200 (0.071383) | 0.113293 / 0.141683 (-0.028390) | 1.437327 / 1.452155 (-0.014828) | 1.574400 / 1.492716 (0.081684) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.325235 / 0.018006 (0.307229) | 0.535405 / 0.000490 (0.534915) | 0.014119 / 0.000200 (0.013919) | 0.000278 / 0.000054 (0.000224) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030826 / 0.037411 (-0.006585) | 0.114077 / 0.014526 (0.099552) | 0.128799 / 0.176557 (-0.047758) | 0.172164 / 0.737135 (-0.564971) | 0.133665 / 0.296338 (-0.162673) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430898 / 0.215209 (0.215689) | 4.285507 / 2.077655 (2.207853) | 2.089767 / 1.504120 (0.585647) | 1.899457 / 1.541195 (0.358262) | 2.042875 / 1.468490 (0.574385) | 0.690575 / 4.584777 (-3.894202) | 3.815905 / 3.745712 (0.070192) | 3.371085 / 5.269862 (-1.898776) | 1.865748 / 4.565676 (-2.699929) | 0.086678 / 0.424275 (-0.337597) | 0.013172 / 0.007607 (0.005565) | 0.552038 / 0.226044 (0.325994) | 5.275093 / 2.268929 (3.006165) | 2.561102 / 55.444624 (-52.883522) | 2.224235 / 6.876477 (-4.652242) | 2.330315 / 2.142072 (0.188243) | 0.845163 / 4.805227 (-3.960064) | 0.170675 / 6.500664 (-6.329989) | 0.068446 / 0.075469 (-0.007023) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.261213 / 1.841788 (-0.580575) | 15.354959 / 8.074308 (7.280651) | 15.034302 / 10.191392 (4.842910) | 0.146704 / 0.680424 (-0.533720) | 0.017986 / 0.534201 (-0.516215) | 0.425978 / 0.579283 (-0.153305) | 0.421806 / 0.434364 (-0.012558) | 0.494844 / 0.540337 (-0.045493) | 0.587870 / 1.386936 (-0.799066) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0933901bb757e9a386095aef0fb11de9f9a04085 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012765 / 0.011353 (0.001412) | 0.006429 / 0.011008 (-0.004579) | 0.133669 / 0.038508 (0.095161) | 0.041420 / 0.023109 (0.018311) | 0.419990 / 0.275898 (0.144092) | 0.505218 / 0.323480 (0.181738) | 0.010189 / 0.007986 (0.002204) | 0.005134 / 0.004328 (0.000805) | 0.100890 / 0.004250 (0.096640) | 0.045639 / 0.037052 (0.008587) | 0.440593 / 0.258489 (0.182103) | 0.476966 / 0.293841 (0.183125) | 0.059270 / 0.128546 (-0.069276) | 0.018625 / 0.075646 (-0.057021) | 0.444957 / 0.419271 (0.025686) | 0.060669 / 0.043533 (0.017136) | 0.415373 / 0.255139 (0.160234) | 0.461810 / 0.283200 (0.178610) | 0.116119 / 0.141683 (-0.025564) | 1.873691 / 1.452155 (0.421536) | 1.939891 / 1.492716 (0.447175) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259529 / 0.018006 (0.241523) | 0.587213 / 0.000490 (0.586723) | 0.003729 / 0.000200 (0.003529) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032064 / 0.037411 (-0.005347) | 0.140228 / 0.014526 (0.125702) | 0.147139 / 0.176557 (-0.029417) | 0.193731 / 0.737135 (-0.543405) | 0.162126 / 0.296338 (-0.134213) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639262 / 0.215209 (0.424053) | 6.496491 / 2.077655 (4.418836) | 2.602044 / 1.504120 (1.097924) | 2.245891 / 1.541195 (0.704696) | 2.301321 / 1.468490 (0.832831) | 1.234088 / 4.584777 (-3.350689) | 5.883315 / 3.745712 (2.137603) | 3.166902 / 5.269862 (-2.102959) | 2.258279 / 4.565676 (-2.307398) | 0.146203 / 0.424275 (-0.278072) | 0.015490 / 0.007607 (0.007883) | 0.800188 / 0.226044 (0.574144) | 8.150866 / 2.268929 (5.881938) | 3.419508 / 55.444624 (-52.025117) | 2.712174 / 6.876477 (-4.164302) | 2.805059 / 2.142072 (0.662987) | 1.421047 / 4.805227 (-3.384180) | 0.254274 / 6.500664 (-6.246390) | 0.083886 / 0.075469 (0.008417) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.651962 / 1.841788 (-0.189826) | 19.453202 / 8.074308 (11.378894) | 24.643881 / 10.191392 (14.452489) | 0.263612 / 0.680424 (-0.416812) | 0.046913 / 0.534201 (-0.487288) | 0.579861 / 0.579283 (0.000578) | 0.695137 / 0.434364 (0.260773) | 0.705479 / 0.540337 (0.165142) | 0.806073 / 1.386936 (-0.580863) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010384 / 0.011353 (-0.000969) | 0.007460 / 0.011008 (-0.003548) | 0.107830 / 0.038508 (0.069322) | 0.036792 / 0.023109 (0.013682) | 0.469585 / 0.275898 (0.193687) | 0.521278 / 0.323480 (0.197798) | 0.007472 / 0.007986 (-0.000513) | 0.007774 / 0.004328 (0.003446) | 0.105405 / 0.004250 (0.101154) | 0.053732 / 0.037052 (0.016680) | 0.486299 / 0.258489 (0.227810) | 0.537067 / 0.293841 (0.243226) | 0.053378 / 0.128546 (-0.075168) | 0.022018 / 0.075646 (-0.053628) | 0.127765 / 0.419271 (-0.291507) | 0.063844 / 0.043533 (0.020311) | 0.479724 / 0.255139 (0.224585) | 0.511243 / 0.283200 (0.228043) | 0.123223 / 0.141683 (-0.018460) | 1.934167 / 1.452155 (0.482013) | 2.003168 / 1.492716 (0.510451) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227670 / 0.018006 (0.209664) | 0.609125 / 0.000490 (0.608635) | 0.004408 / 0.000200 (0.004208) | 0.000147 / 0.000054 (0.000092) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035905 / 0.037411 (-0.001506) | 0.142207 / 0.014526 (0.127681) | 0.154749 / 0.176557 (-0.021808) | 0.216191 / 0.737135 (-0.520944) | 0.156577 / 0.296338 (-0.139761) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.665085 / 0.215209 (0.449876) | 6.510923 / 2.077655 (4.433269) | 2.902438 / 1.504120 (1.398318) | 2.561427 / 1.541195 (1.020232) | 2.669556 / 1.468490 (1.201066) | 1.190340 / 4.584777 (-3.394437) | 5.933066 / 3.745712 (2.187354) | 5.627784 / 5.269862 (0.357922) | 2.971922 / 4.565676 (-1.593755) | 0.140884 / 0.424275 (-0.283391) | 0.015382 / 0.007607 (0.007775) | 0.810441 / 0.226044 (0.584396) | 8.255538 / 2.268929 (5.986609) | 3.819014 / 55.444624 (-51.625611) | 3.222479 / 6.876477 (-3.653998) | 3.181700 / 2.142072 (1.039627) | 1.483403 / 4.805227 (-3.321824) | 0.262726 / 6.500664 (-6.237939) | 0.090252 / 0.075469 (0.014783) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748566 / 1.841788 (-0.093222) | 19.566894 / 8.074308 (11.492586) | 24.382155 / 10.191392 (14.190763) | 0.260118 / 0.680424 (-0.420305) | 0.028725 / 0.534201 (-0.505476) | 0.564875 / 0.579283 (-0.014408) | 0.666708 / 0.434364 (0.232344) | 0.691165 / 0.540337 (0.150827) | 0.837061 / 1.386936 (-0.549875) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fe6bf908e9f12e0b69b4059c392da8264881525d \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010098 / 0.011353 (-0.001255) | 0.005797 / 0.011008 (-0.005211) | 0.111262 / 0.038508 (0.072754) | 0.039687 / 0.023109 (0.016578) | 0.331081 / 0.275898 (0.055183) | 0.395878 / 0.323480 (0.072398) | 0.009244 / 0.007986 (0.001259) | 0.004498 / 0.004328 (0.000170) | 0.086129 / 0.004250 (0.081879) | 0.046662 / 0.037052 (0.009610) | 0.361926 / 0.258489 (0.103437) | 0.386155 / 0.293841 (0.092314) | 0.043657 / 0.128546 (-0.084889) | 0.013545 / 0.075646 (-0.062101) | 0.383735 / 0.419271 (-0.035537) | 0.055727 / 0.043533 (0.012194) | 0.355356 / 0.255139 (0.100217) | 0.358749 / 0.283200 (0.075550) | 0.123219 / 0.141683 (-0.018463) | 1.707982 / 1.452155 (0.255828) | 1.773342 / 1.492716 (0.280626) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238902 / 0.018006 (0.220896) | 0.495525 / 0.000490 (0.495036) | 0.001742 / 0.000200 (0.001542) | 0.000096 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031276 / 0.037411 (-0.006135) | 0.124286 / 0.014526 (0.109760) | 0.136236 / 0.176557 (-0.040321) | 0.180257 / 0.737135 (-0.556879) | 0.141047 / 0.296338 (-0.155292) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465075 / 0.215209 (0.249865) | 4.543997 / 2.077655 (2.466342) | 2.036632 / 1.504120 (0.532512) | 1.820356 / 1.541195 (0.279161) | 1.860692 / 1.468490 (0.392202) | 0.807549 / 4.584777 (-3.777227) | 4.400369 / 3.745712 (0.654657) | 2.423372 / 5.269862 (-2.846490) | 1.741338 / 4.565676 (-2.824339) | 0.099457 / 0.424275 (-0.324818) | 0.014464 / 0.007607 (0.006857) | 0.599442 / 0.226044 (0.373398) | 5.867798 / 2.268929 (3.598870) | 2.641859 / 55.444624 (-52.802766) | 2.294246 / 6.876477 (-4.582231) | 2.329639 / 2.142072 (0.187567) | 0.981897 / 4.805227 (-3.823331) | 0.189278 / 6.500664 (-6.311386) | 0.071868 / 0.075469 (-0.003601) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.471800 / 1.841788 (-0.369988) | 17.149150 / 8.074308 (9.074841) | 15.818942 / 10.191392 (5.627550) | 0.174760 / 0.680424 (-0.505664) | 0.033507 / 0.534201 (-0.500694) | 0.511055 / 0.579283 (-0.068228) | 0.517107 / 0.434364 (0.082743) | 0.650813 / 0.540337 (0.110476) | 0.752515 / 1.386936 (-0.634421) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008651 / 0.011353 (-0.002702) | 0.005935 / 0.011008 (-0.005073) | 0.088589 / 0.038508 (0.050081) | 0.038796 / 0.023109 (0.015687) | 0.415430 / 0.275898 (0.139532) | 0.443693 / 0.323480 (0.120213) | 0.006631 / 0.007986 (-0.001354) | 0.004638 / 0.004328 (0.000309) | 0.085779 / 0.004250 (0.081529) | 0.053994 / 0.037052 (0.016942) | 0.408349 / 0.258489 (0.149860) | 0.475441 / 0.293841 (0.181600) | 0.042792 / 0.128546 (-0.085754) | 0.013938 / 0.075646 (-0.061709) | 0.102173 / 0.419271 (-0.317098) | 0.057940 / 0.043533 (0.014407) | 0.408967 / 0.255139 (0.153828) | 0.422741 / 0.283200 (0.139541) | 0.121844 / 0.141683 (-0.019839) | 1.772779 / 1.452155 (0.320625) | 1.837706 / 1.492716 (0.344989) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228896 / 0.018006 (0.210890) | 0.497964 / 0.000490 (0.497475) | 0.004402 / 0.000200 (0.004202) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035626 / 0.037411 (-0.001786) | 0.132021 / 0.014526 (0.117495) | 0.145599 / 0.176557 (-0.030957) | 0.192317 / 0.737135 (-0.544818) | 0.150165 / 0.296338 (-0.146174) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.500216 / 0.215209 (0.285007) | 5.002916 / 2.077655 (2.925262) | 2.502439 / 1.504120 (0.998319) | 2.353019 / 1.541195 (0.811825) | 2.485082 / 1.468490 (1.016592) | 0.827694 / 4.584777 (-3.757083) | 4.569319 / 3.745712 (0.823607) | 3.739820 / 5.269862 (-1.530042) | 2.097857 / 4.565676 (-2.467819) | 0.098636 / 0.424275 (-0.325639) | 0.014608 / 0.007607 (0.007001) | 0.604411 / 0.226044 (0.378366) | 6.131702 / 2.268929 (3.862774) | 3.043988 / 55.444624 (-52.400637) | 2.642427 / 6.876477 (-4.234050) | 2.687223 / 2.142072 (0.545151) | 0.968808 / 4.805227 (-3.836419) | 0.193876 / 6.500664 (-6.306788) | 0.076931 / 0.075469 (0.001462) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.511820 / 1.841788 (-0.329968) | 17.971574 / 8.074308 (9.897265) | 16.512738 / 10.191392 (6.321346) | 0.223702 / 0.680424 (-0.456722) | 0.020191 / 0.534201 (-0.514010) | 0.511045 / 0.579283 (-0.068238) | 0.499813 / 0.434364 (0.065449) | 0.642147 / 0.540337 (0.101810) | 0.756029 / 1.386936 (-0.630907) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1f6c7b9eb4bca89ec90c465623f7a2e6f5251062 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008909 / 0.011353 (-0.002444) | 0.005096 / 0.011008 (-0.005912) | 0.098568 / 0.038508 (0.060060) | 0.034548 / 0.023109 (0.011438) | 0.294762 / 0.275898 (0.018864) | 0.366093 / 0.323480 (0.042613) | 0.007476 / 0.007986 (-0.000510) | 0.003982 / 0.004328 (-0.000347) | 0.075975 / 0.004250 (0.071725) | 0.040499 / 0.037052 (0.003446) | 0.315050 / 0.258489 (0.056561) | 0.351273 / 0.293841 (0.057433) | 0.038327 / 0.128546 (-0.090219) | 0.011943 / 0.075646 (-0.063703) | 0.332148 / 0.419271 (-0.087124) | 0.047648 / 0.043533 (0.004115) | 0.295817 / 0.255139 (0.040678) | 0.322704 / 0.283200 (0.039504) | 0.100830 / 0.141683 (-0.040853) | 1.422162 / 1.452155 (-0.029993) | 1.468972 / 1.492716 (-0.023744) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201164 / 0.018006 (0.183158) | 0.435425 / 0.000490 (0.434935) | 0.001576 / 0.000200 (0.001376) | 0.000218 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026667 / 0.037411 (-0.010744) | 0.106161 / 0.014526 (0.091636) | 0.115836 / 0.176557 (-0.060720) | 0.151511 / 0.737135 (-0.585624) | 0.122248 / 0.296338 (-0.174091) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395974 / 0.215209 (0.180765) | 3.952958 / 2.077655 (1.875303) | 1.772111 / 1.504120 (0.267991) | 1.581370 / 1.541195 (0.040175) | 1.602811 / 1.468490 (0.134321) | 0.694072 / 4.584777 (-3.890705) | 3.640238 / 3.745712 (-0.105474) | 2.028865 / 5.269862 (-3.240997) | 1.419182 / 4.565676 (-3.146495) | 0.084078 / 0.424275 (-0.340197) | 0.012248 / 0.007607 (0.004641) | 0.499768 / 0.226044 (0.273723) | 4.997449 / 2.268929 (2.728521) | 2.280711 / 55.444624 (-53.163913) | 1.971701 / 6.876477 (-4.904776) | 1.983248 / 2.142072 (-0.158824) | 0.831030 / 4.805227 (-3.974198) | 0.163008 / 6.500664 (-6.337656) | 0.061887 / 0.075469 (-0.013582) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.191744 / 1.841788 (-0.650043) | 14.424546 / 8.074308 (6.350238) | 14.530127 / 10.191392 (4.338735) | 0.165793 / 0.680424 (-0.514631) | 0.029099 / 0.534201 (-0.505102) | 0.447830 / 0.579283 (-0.131453) | 0.441036 / 0.434364 (0.006672) | 0.554697 / 0.540337 (0.014360) | 0.668854 / 1.386936 (-0.718082) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006825 / 0.011353 (-0.004528) | 0.004998 / 0.011008 (-0.006010) | 0.074197 / 0.038508 (0.035689) | 0.032381 / 0.023109 (0.009272) | 0.335745 / 0.275898 (0.059847) | 0.360474 / 0.323480 (0.036994) | 0.005420 / 0.007986 (-0.002566) | 0.005121 / 0.004328 (0.000792) | 0.074980 / 0.004250 (0.070730) | 0.046392 / 0.037052 (0.009340) | 0.338693 / 0.258489 (0.080204) | 0.383679 / 0.293841 (0.089838) | 0.035380 / 0.128546 (-0.093166) | 0.012197 / 0.075646 (-0.063449) | 0.085738 / 0.419271 (-0.333533) | 0.049990 / 0.043533 (0.006458) | 0.342640 / 0.255139 (0.087501) | 0.355139 / 0.283200 (0.071939) | 0.102992 / 0.141683 (-0.038690) | 1.451900 / 1.452155 (-0.000254) | 1.550919 / 1.492716 (0.058202) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223241 / 0.018006 (0.205235) | 0.436954 / 0.000490 (0.436464) | 0.003319 / 0.000200 (0.003120) | 0.000088 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028042 / 0.037411 (-0.009370) | 0.106079 / 0.014526 (0.091554) | 0.122713 / 0.176557 (-0.053843) | 0.156543 / 0.737135 (-0.580593) | 0.122424 / 0.296338 (-0.173914) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439482 / 0.215209 (0.224273) | 4.283112 / 2.077655 (2.205457) | 2.139705 / 1.504120 (0.635585) | 1.940898 / 1.541195 (0.399703) | 2.003906 / 1.468490 (0.535416) | 0.703269 / 4.584777 (-3.881508) | 3.780391 / 3.745712 (0.034679) | 2.079963 / 5.269862 (-3.189898) | 1.330669 / 4.565676 (-3.235007) | 0.086582 / 0.424275 (-0.337693) | 0.012497 / 0.007607 (0.004890) | 0.519329 / 0.226044 (0.293284) | 5.218117 / 2.268929 (2.949189) | 2.635982 / 55.444624 (-52.808643) | 2.301111 / 6.876477 (-4.575366) | 2.341312 / 2.142072 (0.199239) | 0.840157 / 4.805227 (-3.965070) | 0.166174 / 6.500664 (-6.334490) | 0.062890 / 0.075469 (-0.012579) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257672 / 1.841788 (-0.584116) | 14.983374 / 8.074308 (6.909066) | 14.284441 / 10.191392 (4.093049) | 0.176077 / 0.680424 (-0.504347) | 0.017544 / 0.534201 (-0.516657) | 0.429619 / 0.579283 (-0.149664) | 0.426371 / 0.434364 (-0.007993) | 0.534832 / 0.540337 (-0.005506) | 0.643322 / 1.386936 (-0.743614) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0409b1435876fa97b3674b0275285e84b49d83f8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010622 / 0.011353 (-0.000731) | 0.005856 / 0.011008 (-0.005152) | 0.108608 / 0.038508 (0.070100) | 0.039868 / 0.023109 (0.016759) | 0.327853 / 0.275898 (0.051955) | 0.396721 / 0.323480 (0.073241) | 0.008916 / 0.007986 (0.000930) | 0.004590 / 0.004328 (0.000261) | 0.085020 / 0.004250 (0.080770) | 0.046608 / 0.037052 (0.009555) | 0.356369 / 0.258489 (0.097880) | 0.391142 / 0.293841 (0.097301) | 0.040579 / 0.128546 (-0.087967) | 0.012249 / 0.075646 (-0.063397) | 0.387740 / 0.419271 (-0.031532) | 0.057794 / 0.043533 (0.014262) | 0.335763 / 0.255139 (0.080624) | 0.369847 / 0.283200 (0.086647) | 0.121276 / 0.141683 (-0.020407) | 1.605406 / 1.452155 (0.153251) | 1.709524 / 1.492716 (0.216808) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226688 / 0.018006 (0.208681) | 0.493320 / 0.000490 (0.492831) | 0.002825 / 0.000200 (0.002626) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031874 / 0.037411 (-0.005538) | 0.117365 / 0.014526 (0.102840) | 0.127697 / 0.176557 (-0.048859) | 0.175589 / 0.737135 (-0.561546) | 0.137731 / 0.296338 (-0.158608) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472563 / 0.215209 (0.257354) | 4.744383 / 2.077655 (2.666728) | 2.152015 / 1.504120 (0.647895) | 1.925398 / 1.541195 (0.384203) | 2.054613 / 1.468490 (0.586123) | 0.821703 / 4.584777 (-3.763074) | 4.468177 / 3.745712 (0.722465) | 4.687682 / 5.269862 (-0.582179) | 2.379674 / 4.565676 (-2.186003) | 0.101325 / 0.424275 (-0.322950) | 0.014891 / 0.007607 (0.007284) | 0.593161 / 0.226044 (0.367117) | 5.641670 / 2.268929 (3.372741) | 2.460206 / 55.444624 (-52.984419) | 2.131148 / 6.876477 (-4.745329) | 2.351067 / 2.142072 (0.208994) | 0.997634 / 4.805227 (-3.807593) | 0.195338 / 6.500664 (-6.305326) | 0.075540 / 0.075469 (0.000071) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.411585 / 1.841788 (-0.430203) | 17.055689 / 8.074308 (8.981381) | 16.544028 / 10.191392 (6.352636) | 0.180840 / 0.680424 (-0.499584) | 0.034549 / 0.534201 (-0.499652) | 0.510256 / 0.579283 (-0.069027) | 0.525632 / 0.434364 (0.091268) | 0.601206 / 0.540337 (0.060868) | 0.668468 / 1.386936 (-0.718469) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008989 / 0.011353 (-0.002364) | 0.006065 / 0.011008 (-0.004943) | 0.088294 / 0.038508 (0.049786) | 0.040404 / 0.023109 (0.017295) | 0.405622 / 0.275898 (0.129724) | 0.454519 / 0.323480 (0.131039) | 0.006919 / 0.007986 (-0.001067) | 0.004545 / 0.004328 (0.000217) | 0.087023 / 0.004250 (0.082772) | 0.055962 / 0.037052 (0.018910) | 0.400942 / 0.258489 (0.142453) | 0.490670 / 0.293841 (0.196829) | 0.044086 / 0.128546 (-0.084461) | 0.014485 / 0.075646 (-0.061162) | 0.103333 / 0.419271 (-0.315938) | 0.059663 / 0.043533 (0.016130) | 0.404944 / 0.255139 (0.149805) | 0.425763 / 0.283200 (0.142563) | 0.123989 / 0.141683 (-0.017694) | 1.777244 / 1.452155 (0.325089) | 1.879884 / 1.492716 (0.387167) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226440 / 0.018006 (0.208434) | 0.492688 / 0.000490 (0.492198) | 0.004691 / 0.000200 (0.004491) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035123 / 0.037411 (-0.002288) | 0.134288 / 0.014526 (0.119762) | 0.145542 / 0.176557 (-0.031015) | 0.195372 / 0.737135 (-0.541764) | 0.152551 / 0.296338 (-0.143787) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468615 / 0.215209 (0.253406) | 4.813363 / 2.077655 (2.735708) | 2.333606 / 1.504120 (0.829486) | 2.107344 / 1.541195 (0.566149) | 2.109109 / 1.468490 (0.640619) | 0.783779 / 4.584777 (-3.800998) | 4.521448 / 3.745712 (0.775736) | 2.290532 / 5.269862 (-2.979329) | 1.553488 / 4.565676 (-3.012189) | 0.088786 / 0.424275 (-0.335489) | 0.013091 / 0.007607 (0.005484) | 0.567165 / 0.226044 (0.341120) | 5.974315 / 2.268929 (3.705386) | 2.815018 / 55.444624 (-52.629606) | 2.488954 / 6.876477 (-4.387522) | 2.461849 / 2.142072 (0.319776) | 0.934487 / 4.805227 (-3.870740) | 0.190209 / 6.500664 (-6.310455) | 0.074811 / 0.075469 (-0.000658) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.513476 / 1.841788 (-0.328311) | 17.902599 / 8.074308 (9.828291) | 14.308027 / 10.191392 (4.116635) | 0.201992 / 0.680424 (-0.478432) | 0.018678 / 0.534201 (-0.515523) | 0.454707 / 0.579283 (-0.124576) | 0.470643 / 0.434364 (0.036279) | 0.612534 / 0.540337 (0.072197) | 0.685773 / 1.386936 (-0.701163) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4a66da3633a811eb8ea01d23469c41dfec0ffb8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009385 / 0.011353 (-0.001968) | 0.005220 / 0.011008 (-0.005788) | 0.098722 / 0.038508 (0.060214) | 0.035382 / 0.023109 (0.012273) | 0.297114 / 0.275898 (0.021216) | 0.371443 / 0.323480 (0.047963) | 0.008070 / 0.007986 (0.000084) | 0.004204 / 0.004328 (-0.000125) | 0.075621 / 0.004250 (0.071370) | 0.046015 / 0.037052 (0.008963) | 0.304569 / 0.258489 (0.046080) | 0.345598 / 0.293841 (0.051757) | 0.037946 / 0.128546 (-0.090600) | 0.011972 / 0.075646 (-0.063674) | 0.331993 / 0.419271 (-0.087279) | 0.047250 / 0.043533 (0.003717) | 0.296588 / 0.255139 (0.041449) | 0.316070 / 0.283200 (0.032870) | 0.108211 / 0.141683 (-0.033472) | 1.447619 / 1.452155 (-0.004535) | 1.481243 / 1.492716 (-0.011473) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274860 / 0.018006 (0.256854) | 0.503139 / 0.000490 (0.502649) | 0.003598 / 0.000200 (0.003398) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026752 / 0.037411 (-0.010660) | 0.109008 / 0.014526 (0.094482) | 0.119109 / 0.176557 (-0.057448) | 0.158462 / 0.737135 (-0.578673) | 0.126171 / 0.296338 (-0.170168) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396396 / 0.215209 (0.181187) | 3.963055 / 2.077655 (1.885400) | 1.796308 / 1.504120 (0.292188) | 1.600565 / 1.541195 (0.059370) | 1.742409 / 1.468490 (0.273919) | 0.690942 / 4.584777 (-3.893835) | 3.713343 / 3.745712 (-0.032369) | 2.066804 / 5.269862 (-3.203058) | 1.292946 / 4.565676 (-3.272730) | 0.084344 / 0.424275 (-0.339931) | 0.012473 / 0.007607 (0.004865) | 0.513109 / 0.226044 (0.287065) | 5.175141 / 2.268929 (2.906213) | 2.266559 / 55.444624 (-53.178066) | 1.935737 / 6.876477 (-4.940740) | 2.028911 / 2.142072 (-0.113161) | 0.831191 / 4.805227 (-3.974036) | 0.163155 / 6.500664 (-6.337509) | 0.063414 / 0.075469 (-0.012055) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.195429 / 1.841788 (-0.646358) | 15.257933 / 8.074308 (7.183625) | 14.358815 / 10.191392 (4.167423) | 0.152677 / 0.680424 (-0.527747) | 0.028890 / 0.534201 (-0.505311) | 0.455342 / 0.579283 (-0.123941) | 0.442602 / 0.434364 (0.008238) | 0.526833 / 0.540337 (-0.013505) | 0.618296 / 1.386936 (-0.768640) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007613 / 0.011353 (-0.003740) | 0.005515 / 0.011008 (-0.005493) | 0.073759 / 0.038508 (0.035251) | 0.033944 / 0.023109 (0.010835) | 0.347764 / 0.275898 (0.071866) | 0.371143 / 0.323480 (0.047664) | 0.005997 / 0.007986 (-0.001988) | 0.004322 / 0.004328 (-0.000006) | 0.073002 / 0.004250 (0.068751) | 0.053051 / 0.037052 (0.015999) | 0.340345 / 0.258489 (0.081856) | 0.383761 / 0.293841 (0.089920) | 0.037734 / 0.128546 (-0.090813) | 0.012815 / 0.075646 (-0.062831) | 0.086998 / 0.419271 (-0.332273) | 0.050165 / 0.043533 (0.006632) | 0.343864 / 0.255139 (0.088725) | 0.356734 / 0.283200 (0.073534) | 0.108955 / 0.141683 (-0.032728) | 1.464558 / 1.452155 (0.012403) | 1.560084 / 1.492716 (0.067368) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.327885 / 0.018006 (0.309878) | 0.515515 / 0.000490 (0.515025) | 0.000439 / 0.000200 (0.000239) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030741 / 0.037411 (-0.006670) | 0.107634 / 0.014526 (0.093108) | 0.127121 / 0.176557 (-0.049436) | 0.164044 / 0.737135 (-0.573092) | 0.129097 / 0.296338 (-0.167242) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435690 / 0.215209 (0.220481) | 4.350705 / 2.077655 (2.273050) | 2.199597 / 1.504120 (0.695477) | 2.022715 / 1.541195 (0.481521) | 2.265907 / 1.468490 (0.797417) | 0.695817 / 4.584777 (-3.888960) | 3.795207 / 3.745712 (0.049494) | 3.061587 / 5.269862 (-2.208274) | 1.872213 / 4.565676 (-2.693463) | 0.085265 / 0.424275 (-0.339010) | 0.012243 / 0.007607 (0.004636) | 0.547209 / 0.226044 (0.321164) | 5.383626 / 2.268929 (3.114698) | 2.707439 / 55.444624 (-52.737185) | 2.393773 / 6.876477 (-4.482703) | 2.481385 / 2.142072 (0.339312) | 0.826169 / 4.805227 (-3.979059) | 0.166643 / 6.500664 (-6.334021) | 0.065817 / 0.075469 (-0.009652) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274469 / 1.841788 (-0.567318) | 15.565025 / 8.074308 (7.490717) | 14.254192 / 10.191392 (4.062800) | 0.166785 / 0.680424 (-0.513639) | 0.017830 / 0.534201 (-0.516371) | 0.430406 / 0.579283 (-0.148877) | 0.435655 / 0.434364 (0.001292) | 0.530605 / 0.540337 (-0.009732) | 0.636355 / 1.386936 (-0.750581) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#146983fdc70b9fe2cc38109368e185b6ffa7a05e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008466 / 0.011353 (-0.002887) | 0.004679 / 0.011008 (-0.006329) | 0.100534 / 0.038508 (0.062025) | 0.029513 / 0.023109 (0.006403) | 0.302866 / 0.275898 (0.026968) | 0.352816 / 0.323480 (0.029336) | 0.006912 / 0.007986 (-0.001074) | 0.003513 / 0.004328 (-0.000815) | 0.078625 / 0.004250 (0.074375) | 0.036725 / 0.037052 (-0.000327) | 0.312135 / 0.258489 (0.053646) | 0.344579 / 0.293841 (0.050738) | 0.033870 / 0.128546 (-0.094677) | 0.011563 / 0.075646 (-0.064083) | 0.318982 / 0.419271 (-0.100290) | 0.043002 / 0.043533 (-0.000531) | 0.301956 / 0.255139 (0.046817) | 0.330798 / 0.283200 (0.047599) | 0.091755 / 0.141683 (-0.049927) | 1.458577 / 1.452155 (0.006422) | 1.532642 / 1.492716 (0.039926) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194853 / 0.018006 (0.176847) | 0.396844 / 0.000490 (0.396354) | 0.004401 / 0.000200 (0.004201) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022971 / 0.037411 (-0.014441) | 0.096595 / 0.014526 (0.082069) | 0.106104 / 0.176557 (-0.070452) | 0.144815 / 0.737135 (-0.592320) | 0.110036 / 0.296338 (-0.186303) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415025 / 0.215209 (0.199816) | 4.138136 / 2.077655 (2.060481) | 1.861253 / 1.504120 (0.357133) | 1.653420 / 1.541195 (0.112226) | 1.703784 / 1.468490 (0.235294) | 0.698261 / 4.584777 (-3.886516) | 3.357240 / 3.745712 (-0.388472) | 3.025790 / 5.269862 (-2.244072) | 1.637191 / 4.565676 (-2.928485) | 0.085620 / 0.424275 (-0.338655) | 0.012454 / 0.007607 (0.004846) | 0.524708 / 0.226044 (0.298663) | 5.269234 / 2.268929 (3.000306) | 2.290612 / 55.444624 (-53.154012) | 1.936107 / 6.876477 (-4.940370) | 1.968216 / 2.142072 (-0.173856) | 0.810438 / 4.805227 (-3.994789) | 0.154133 / 6.500664 (-6.346531) | 0.064978 / 0.075469 (-0.010491) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231782 / 1.841788 (-0.610006) | 13.545573 / 8.074308 (5.471264) | 14.558765 / 10.191392 (4.367373) | 0.140763 / 0.680424 (-0.539661) | 0.029259 / 0.534201 (-0.504942) | 0.407776 / 0.579283 (-0.171507) | 0.410244 / 0.434364 (-0.024120) | 0.477313 / 0.540337 (-0.063024) | 0.551465 / 1.386936 (-0.835471) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006272 / 0.011353 (-0.005081) | 0.004397 / 0.011008 (-0.006611) | 0.077496 / 0.038508 (0.038988) | 0.026946 / 0.023109 (0.003837) | 0.342992 / 0.275898 (0.067094) | 0.374407 / 0.323480 (0.050927) | 0.004849 / 0.007986 (-0.003136) | 0.004549 / 0.004328 (0.000220) | 0.076439 / 0.004250 (0.072189) | 0.035829 / 0.037052 (-0.001224) | 0.343483 / 0.258489 (0.084994) | 0.385581 / 0.293841 (0.091740) | 0.031745 / 0.128546 (-0.096801) | 0.011617 / 0.075646 (-0.064030) | 0.087207 / 0.419271 (-0.332064) | 0.042252 / 0.043533 (-0.001281) | 0.343223 / 0.255139 (0.088084) | 0.368707 / 0.283200 (0.085508) | 0.093259 / 0.141683 (-0.048424) | 1.506904 / 1.452155 (0.054750) | 1.567583 / 1.492716 (0.074867) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.158962 / 0.018006 (0.140955) | 0.395982 / 0.000490 (0.395492) | 0.003604 / 0.000200 (0.003404) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025003 / 0.037411 (-0.012408) | 0.101176 / 0.014526 (0.086650) | 0.104494 / 0.176557 (-0.072062) | 0.140414 / 0.737135 (-0.596722) | 0.108398 / 0.296338 (-0.187941) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436849 / 0.215209 (0.221640) | 4.369428 / 2.077655 (2.291774) | 2.070613 / 1.504120 (0.566493) | 1.867511 / 1.541195 (0.326317) | 1.866589 / 1.468490 (0.398099) | 0.700036 / 4.584777 (-3.884741) | 3.407513 / 3.745712 (-0.338199) | 3.022409 / 5.269862 (-2.247453) | 1.581423 / 4.565676 (-2.984253) | 0.083425 / 0.424275 (-0.340850) | 0.012380 / 0.007607 (0.004773) | 0.535087 / 0.226044 (0.309043) | 5.374814 / 2.268929 (3.105886) | 2.504841 / 55.444624 (-52.939784) | 2.166484 / 6.876477 (-4.709993) | 2.166363 / 2.142072 (0.024291) | 0.803692 / 4.805227 (-4.001535) | 0.150873 / 6.500664 (-6.349791) | 0.066253 / 0.075469 (-0.009216) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291256 / 1.841788 (-0.550532) | 13.827843 / 8.074308 (5.753535) | 13.839334 / 10.191392 (3.647942) | 0.153530 / 0.680424 (-0.526894) | 0.016896 / 0.534201 (-0.517305) | 0.379937 / 0.579283 (-0.199346) | 0.396241 / 0.434364 (-0.038123) | 0.461808 / 0.540337 (-0.078530) | 0.553023 / 1.386936 (-0.833913) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#779ddc5c7ebbd406b2a6c9092c3f455a2cc7f5e7 \"CML watermark\")\n" ]
2023-01-23T12:49:40
2023-02-13T20:23:34
2023-02-13T20:16:38
Use the "shard generator approach with periodic progress updates" (used in `save_to_disk` and multi-proc `load_dataset`) in `Dataset.map` to enable having a single TQDM progress bar in the multi-proc mode. Closes https://github.com/huggingface/datasets/issues/771, closes https://github.com/huggingface/datasets/issues/3177 TODO: - [x] cleaner refactor of the `_map_single` decorators now that they also have to wrap generator functions (decorate `map` instead of `map_single` with the `transmit_` decorators and predict the shards' fingerprint in `map`)
mariosasko
https://github.com/huggingface/datasets/pull/5455
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5455", "html_url": "https://github.com/huggingface/datasets/pull/5455", "diff_url": "https://github.com/huggingface/datasets/pull/5455.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5455.patch", "merged_at": "2023-02-13T20:16:38" }
true
1,552,890,419
5,454
Save and resume the state of a DataLoader
open
[ "Something that'd be nice to have is \"manual update of state\". One of the learning from training LLMs is the ability to skip some batches whenever we notice huge spike might be handy.", "Your outline spec is very sound and clear, @lhoestq - thank you!\r\n\r\n@thomasw21, indeed that would be a wonderful extra feature. In Megatron-Deepspeed we manually drained the dataloader for the range we wanted. I wasn't very satisfied with the way we did it, since its behavior would change if you were to do multiple range skips. I think it should remember all the ranges it skipped and not just skip the last range - since otherwise the data is inconsistent (but we probably should discuss this in a separate issue not to derail this much bigger one).", "Hi there! I think this is a critical issue and have an urgent need for it, in my attempt to train on a super large-scale dataset using `datasets`. It is impossible to resume a time-consuming (like one month) experiment by iterating all seen data again, which could possibly cost several days.\r\n\r\n@stas00 @thomasw21 @lhoestq Any updates on this problem after 1 year passed?", "any update๏ผŸ", "No update so far, I wonder if someone implemented a resumable pytorch Sampler somwhere.\r\n\r\nThen regarding resuming a streaming dataset, we'd first like to have an efficient way to skip shards automatically but this is not implemented yet", "I opened a draft here for IterableDataset: https://github.com/huggingface/datasets/pull/6658\r\n\r\n\r\n\r\n```python\r\n\"\"\"Requires https://github.com/huggingface/datasets/pull/6658 (WIP)\"\"\"\r\nfrom datasets import load_dataset\r\nfrom torch.utils.data import DataLoader\r\n\r\nds = load_dataset(..., streaming=True)\r\n# ds = ds.map(tokenize)\r\n# ds = ds.shuffle(seed=42, buffer_size=1000)\r\n\r\n# Init the dataset state_dict, or load it from a checkpoint\r\ndataset_state_dict = ds.state_dict()\r\n\r\n# Resumable training loop\r\nds.load_state_dict(dataset_state_dict)\r\ndataloader = DataLoader(ds, batch_size=batch_size)\r\nfor step, batch in enumerate(dataloader):\r\n ...\r\n if step % save_steps == 0:\r\n dataset_state_dict = ds.state_dict()\r\n```", "Hi @lhoestq - can you provide more information and how to implement on saving and restoring vanilla DataLoader states with map-style datasets?\r\n\r\n", "For now the easiest is probably to use the vanilla DataLoader only for batching and multiprocessing, and implement the resuming logic using a `Dataset` (it has `.select()` to skip examples) and a `dataset_state_dict`:\r\n\r\n\r\n```python\r\nfrom datasets import load_dataset\r\nfrom torch.utils.data import DataLoader\r\n\r\nds = load_dataset(...)\r\n# ds = ds.map(tokenize)\r\n# ds = ds.shuffle(seed=42)\r\n\r\n# Init the dataset state_dict, or load it from a checkpoint\r\ndataset_state_dict = {\"step\": 0} \r\n\r\n# Resumable training loop\r\nstart_step = dataset_state_dict[\"step\"]\r\ndataloader = DataLoader(ds.select(range(start_step * batch_size, len(ds))), batch_size=batch_size)\r\nfor step, batch in enumerate(dataloader, start=start_step):\r\n ...\r\n if step % save_steps == 0:\r\n dataset_state_dict = {\"step\": step}\r\n```", "Hello, I found a similar implementation online that seems to solve your problem. https://github.com/facebookresearch/vissl/blob/main/vissl/data/data_helper.py#L93\r\nit looks like we can set_start_iter in StatefulDistributedSampler to implement the stateful resume requirement we want.\r\n\r\n", "Hi y'all, @lhoestq I wanted to flag that we currently have a StatefulDataLoader in `pytorch/data/torchdata` that has state_dict/load_state_dict methods, which will call a dataset's state_dict/load_state_dict methods but also handle multiprocessing under the hood. Any chance we can collaborate on this and try to get them to work well together? Please have a look here for some basic examples: https://github.com/pytorch/data/tree/main/torchdata/stateful_dataloader#saving-and-loading-state ", "Fantastic ! This will help pushing our IterableDataset state_dict implementation at https://github.com/huggingface/datasets/pull/6658 :) I'll check if there is anything missing to maker them work together, and add tests and some docs referring to the StatefulDataLoader :)", "Ah I just saw this disclaimer in the torchdata README and it feels like people should not rely on it. Should the StatefulDataLoader live elsewhere @andrewkho ?\r\n\r\n> โš ๏ธ As of July 2023, we have paused active development on TorchData and have paused new releases. We have learnt a lot from building it and hearing from users, but also believe we need to re-evaluate the technical design and approach given how much the industry has changed since we began the project. During the rest of 2023 we will be re-evaluating our plans in this space. Please reach out if you suggestions or comments (please use https://github.com/pytorch/data/issues/1196 for feedback).", "@lhoestq Good find, we are in the midst of updating this disclaimer as we're re-starting development and regular releases, though our approach will be to iterate on DL V1 (ie StatefulDataLoader) instead of continuing development on datapipes+DLV2. Let's discuss on a call at some point to figure out the best path forward! ", "As a heads up, `IterableDataset` state_dict has been added in https://github.com/huggingface/datasets/pull/6658\r\n\r\n...and it works out of the box with the `torchdata` `StatefulDataLoader` :)\r\n\r\nSee the docs at https://huggingface.co/docs/datasets/main/en/use_with_pytorch#checkpoint-and-resume", "amazing! Thank you, @lhoestq \r\n\r\ndoes it work with non-iterable dataset as well? the docs only mention iterable dataset", "It's for iterable dataset only. For regular dataset I believe the sampler should implement state_dict, but maybe @andrewkho might know best how to resume a regular dataset with torchdata", "@stas00 stateful dataloader will save and resume samplers for map style datasets. If no state_dict/load_state_dict is provided by the sampler, it will naively skip samples to fast forward. See here for more details https://github.com/pytorch/data/blob/main/torchdata/stateful_dataloader/README.md \n\nHope this helps! ", "Thank you very much for clarifying that, Andrew.\r\n\r\n", "๐Ÿ‘‹ I am trying to use `HF Streaming Dataset + TorchDDP + Stateful Dataloader`, to train using multiple nodes and large datasets. \r\n\r\nSo far, I have been able to use HF Streaming Dataset + TorchDDP with Vanilla Datasets. To do so, I implemented a custom iterable to make sure that shards are distributed across the multiple nodes, while letting the `dataset` take care of the multiple workers. The implementation uses `split_dataset_by_node`:\r\n\r\n```\r\nimport torch\r\nfrom torch.distributed import get_rank, get_world_size\r\nfrom torch.utils.data import DataLoader, IterableDataset\r\n\r\nclass MyIterableDataset(IterableDataset):\r\n def __init__(self, dataset):\r\n super().__init__()\r\n self.dataset = dataset\r\n self._iterable_by_node = None\r\n\r\n def __iter__(self):\r\n if torch.distributed.is_available() and torch.distributed.is_initialized():\r\n world_size = get_world_size()\r\n process_rank = get_rank()\r\n else:\r\n world_size = 1\r\n process_rank = 0\r\n\r\n if world_size > 1:\r\n self._iterable_by_node = split_dataset_by_node(\r\n self.dataset, rank=process_rank, world_size=world_size\r\n )\r\n else:\r\n self._iterable_by_node = self.dataset\r\n\r\n for example in self._iterable_by_node:\r\n # Trying with _state_dict, since `.state_dict()` creates a copy\r\n self._state_dict.update(self._iterable_by_node._state_dict)\r\n yield example\r\n\r\n def state_dict(self):\r\n return self._state_dict\r\n\r\n def load_state_dict(self, state):\r\n pass # Not implemented yet\r\n\r\n```\r\n \r\nThis doesn't seem to work with `StatefulDataLoader` though. I can see the state of the worker's dataset being updated in its corresponding workers' processes, but somehow the updates are not propagated back to the main process. I have tried with different variants of the above code without success. \r\n\r\nI confirmed that if I skip the custom class and pass `dataset` directly to the loader as in the [docs](https://huggingface.co/docs/datasets/main/en/use_with_pytorch#checkpoint-and-resume), the StatefulDataLoader sees the updates for each worker. However, if I do this, multiple nodes will see the same examples, which I definitely don't want.\r\n\r\nIs there something I am missing? It would be nice if streaming `dataset`s would support by default the multinode training (unless it already does it and I am missing something).\r\n\r\n\r\n", "Hi ! Have you tried using `split_dataset_by_node()` and pass the result to the StatefulDataLoader ?\r\n\r\n```python\r\ndataloader = StatefulDataLoader(split_dataset_by_node(dataset, rank=process_rank, world_size=world_size))\r\n```", "> Hi ! Have you tried using split_dataset_by_node() and pass the result to the StatefulDataLoader ?\r\n\r\n@lhoestq it took me some time to test, but it works like a charm. Thanks for the pointer. Totally missed this ๐Ÿคฆ. " ]
2023-01-23T10:58:54
2024-11-27T01:19:21
null
It would be nice when using `datasets` with a PyTorch DataLoader to be able to resume a training from a DataLoader state (e.g. to resume a training that crashed) What I have in mind (but lmk if you have other ideas or comments): For map-style datasets, this requires to have a PyTorch Sampler state that can be saved and reloaded per node and worker. For iterable datasets, this requires to save the state of the dataset iterator, which includes: - the current shard idx and row position in the current shard - the epoch number - the rng state - the shuffle buffer Right now you can already resume the data loading of an iterable dataset by using `IterableDataset.skip` but it takes a lot of time because it re-iterates on all the past data until it reaches the resuming point. cc @stas00 @sgugger
lhoestq
https://github.com/huggingface/datasets/issues/5454
null
false
1,552,727,425
5,453
Fix base directory while extracting insecure TAR files
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008215 / 0.011353 (-0.003138) | 0.004510 / 0.011008 (-0.006498) | 0.099270 / 0.038508 (0.060761) | 0.028682 / 0.023109 (0.005573) | 0.332726 / 0.275898 (0.056827) | 0.371025 / 0.323480 (0.047545) | 0.006665 / 0.007986 (-0.001320) | 0.003329 / 0.004328 (-0.001000) | 0.078509 / 0.004250 (0.074259) | 0.032388 / 0.037052 (-0.004664) | 0.348540 / 0.258489 (0.090051) | 0.382212 / 0.293841 (0.088371) | 0.033307 / 0.128546 (-0.095239) | 0.011642 / 0.075646 (-0.064004) | 0.322573 / 0.419271 (-0.096699) | 0.041297 / 0.043533 (-0.002236) | 0.322710 / 0.255139 (0.067571) | 0.361593 / 0.283200 (0.078394) | 0.082276 / 0.141683 (-0.059407) | 1.481932 / 1.452155 (0.029777) | 1.531677 / 1.492716 (0.038961) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194964 / 0.018006 (0.176958) | 0.406002 / 0.000490 (0.405512) | 0.001015 / 0.000200 (0.000815) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023317 / 0.037411 (-0.014095) | 0.097231 / 0.014526 (0.082705) | 0.103898 / 0.176557 (-0.072659) | 0.139864 / 0.737135 (-0.597271) | 0.106785 / 0.296338 (-0.189554) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419036 / 0.215209 (0.203827) | 4.193985 / 2.077655 (2.116330) | 1.879069 / 1.504120 (0.374949) | 1.675384 / 1.541195 (0.134190) | 1.696225 / 1.468490 (0.227735) | 0.695257 / 4.584777 (-3.889520) | 3.437971 / 3.745712 (-0.307741) | 2.656037 / 5.269862 (-2.613824) | 1.463320 / 4.565676 (-3.102356) | 0.082575 / 0.424275 (-0.341700) | 0.012593 / 0.007607 (0.004986) | 0.526643 / 0.226044 (0.300599) | 5.278366 / 2.268929 (3.009437) | 2.288106 / 55.444624 (-53.156518) | 1.954875 / 6.876477 (-4.921602) | 1.950641 / 2.142072 (-0.191431) | 0.808289 / 4.805227 (-3.996938) | 0.148790 / 6.500664 (-6.351875) | 0.064775 / 0.075469 (-0.010694) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215219 / 1.841788 (-0.626569) | 13.551467 / 8.074308 (5.477159) | 13.841547 / 10.191392 (3.650155) | 0.153610 / 0.680424 (-0.526814) | 0.028308 / 0.534201 (-0.505893) | 0.397087 / 0.579283 (-0.182196) | 0.401724 / 0.434364 (-0.032640) | 0.458042 / 0.540337 (-0.082296) | 0.544955 / 1.386936 (-0.841981) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006321 / 0.011353 (-0.005032) | 0.004336 / 0.011008 (-0.006673) | 0.097196 / 0.038508 (0.058688) | 0.026933 / 0.023109 (0.003824) | 0.416520 / 0.275898 (0.140622) | 0.450703 / 0.323480 (0.127223) | 0.004831 / 0.007986 (-0.003155) | 0.003252 / 0.004328 (-0.001076) | 0.074981 / 0.004250 (0.070730) | 0.036136 / 0.037052 (-0.000917) | 0.423166 / 0.258489 (0.164677) | 0.460936 / 0.293841 (0.167095) | 0.031859 / 0.128546 (-0.096687) | 0.011500 / 0.075646 (-0.064146) | 0.318197 / 0.419271 (-0.101074) | 0.041472 / 0.043533 (-0.002061) | 0.419227 / 0.255139 (0.164088) | 0.444712 / 0.283200 (0.161512) | 0.088841 / 0.141683 (-0.052841) | 1.497237 / 1.452155 (0.045083) | 1.572111 / 1.492716 (0.079395) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239261 / 0.018006 (0.221255) | 0.400358 / 0.000490 (0.399868) | 0.003460 / 0.000200 (0.003261) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024016 / 0.037411 (-0.013395) | 0.098414 / 0.014526 (0.083888) | 0.107220 / 0.176557 (-0.069337) | 0.143538 / 0.737135 (-0.593598) | 0.108607 / 0.296338 (-0.187731) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473896 / 0.215209 (0.258687) | 4.740386 / 2.077655 (2.662731) | 2.458046 / 1.504120 (0.953926) | 2.260895 / 1.541195 (0.719700) | 2.280218 / 1.468490 (0.811728) | 0.694843 / 4.584777 (-3.889934) | 3.349795 / 3.745712 (-0.395917) | 1.846970 / 5.269862 (-3.422892) | 1.151481 / 4.565676 (-3.414195) | 0.082054 / 0.424275 (-0.342221) | 0.012664 / 0.007607 (0.005057) | 0.573400 / 0.226044 (0.347355) | 5.750648 / 2.268929 (3.481720) | 2.904257 / 55.444624 (-52.540367) | 2.555181 / 6.876477 (-4.321295) | 2.595830 / 2.142072 (0.453758) | 0.799580 / 4.805227 (-4.005647) | 0.151088 / 6.500664 (-6.349576) | 0.066639 / 0.075469 (-0.008831) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251413 / 1.841788 (-0.590375) | 13.743368 / 8.074308 (5.669060) | 13.808729 / 10.191392 (3.617337) | 0.144765 / 0.680424 (-0.535659) | 0.016606 / 0.534201 (-0.517594) | 0.376503 / 0.579283 (-0.202780) | 0.381510 / 0.434364 (-0.052854) | 0.440295 / 0.540337 (-0.100043) | 0.524248 / 1.386936 (-0.862688) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#eea1226779993687845da5ecd264cf047e46a128 \"CML watermark\")\n", "Thanks a lot, @albertvillanova - I validated that your fix solves the original problem!" ]
2023-01-23T08:57:40
2023-01-24T01:34:20
2023-01-23T10:10:42
This PR fixes the extraction of insecure TAR files by changing the base path against which TAR members are compared: - from: "." - to: `output_path` This PR also adds tests for extracting insecure TAR files. Related to: - #5441 - #5452 @stas00 please note this PR addresses just one of the issues you pointed out: the use of the cwd by the extractor. The other issues (actionable error messages, raise instead of log error) should be addressed in other PRs.
albertvillanova
https://github.com/huggingface/datasets/pull/5453
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5453", "html_url": "https://github.com/huggingface/datasets/pull/5453", "diff_url": "https://github.com/huggingface/datasets/pull/5453.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5453.patch", "merged_at": "2023-01-23T10:10:42" }
true
1,552,655,939
5,452
Swap log messages for symbolic/hard links in tar extractor
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011848 / 0.011353 (0.000495) | 0.006988 / 0.011008 (-0.004020) | 0.138078 / 0.038508 (0.099570) | 0.040310 / 0.023109 (0.017201) | 0.411857 / 0.275898 (0.135959) | 0.509496 / 0.323480 (0.186016) | 0.010695 / 0.007986 (0.002709) | 0.005275 / 0.004328 (0.000946) | 0.107157 / 0.004250 (0.102907) | 0.050987 / 0.037052 (0.013935) | 0.432387 / 0.258489 (0.173898) | 0.495136 / 0.293841 (0.201295) | 0.055273 / 0.128546 (-0.073273) | 0.019573 / 0.075646 (-0.056074) | 0.460356 / 0.419271 (0.041084) | 0.060916 / 0.043533 (0.017383) | 0.426140 / 0.255139 (0.171002) | 0.430461 / 0.283200 (0.147261) | 0.124569 / 0.141683 (-0.017114) | 1.989404 / 1.452155 (0.537250) | 1.942052 / 1.492716 (0.449335) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287233 / 0.018006 (0.269227) | 0.606056 / 0.000490 (0.605566) | 0.004435 / 0.000200 (0.004235) | 0.000144 / 0.000054 (0.000090) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032353 / 0.037411 (-0.005058) | 0.124237 / 0.014526 (0.109711) | 0.143280 / 0.176557 (-0.033276) | 0.182081 / 0.737135 (-0.555055) | 0.148085 / 0.296338 (-0.148253) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.613550 / 0.215209 (0.398341) | 6.172421 / 2.077655 (4.094766) | 2.466018 / 1.504120 (0.961898) | 2.166433 / 1.541195 (0.625238) | 2.192511 / 1.468490 (0.724021) | 1.248777 / 4.584777 (-3.336000) | 5.746150 / 3.745712 (2.000438) | 3.097184 / 5.269862 (-2.172678) | 2.078176 / 4.565676 (-2.487501) | 0.144351 / 0.424275 (-0.279924) | 0.014830 / 0.007607 (0.007223) | 0.761699 / 0.226044 (0.535655) | 7.713201 / 2.268929 (5.444272) | 3.359647 / 55.444624 (-52.084977) | 2.652595 / 6.876477 (-4.223882) | 2.721952 / 2.142072 (0.579880) | 1.493036 / 4.805227 (-3.312192) | 0.252336 / 6.500664 (-6.248328) | 0.082906 / 0.075469 (0.007436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.643887 / 1.841788 (-0.197901) | 18.762775 / 8.074308 (10.688466) | 22.003583 / 10.191392 (11.812191) | 0.256361 / 0.680424 (-0.424062) | 0.048048 / 0.534201 (-0.486153) | 0.601971 / 0.579283 (0.022688) | 0.712801 / 0.434364 (0.278438) | 0.684473 / 0.540337 (0.144136) | 0.802566 / 1.386936 (-0.584370) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010410 / 0.011353 (-0.000943) | 0.006719 / 0.011008 (-0.004289) | 0.132862 / 0.038508 (0.094354) | 0.036973 / 0.023109 (0.013863) | 0.470925 / 0.275898 (0.195027) | 0.502864 / 0.323480 (0.179384) | 0.007447 / 0.007986 (-0.000539) | 0.005629 / 0.004328 (0.001301) | 0.091985 / 0.004250 (0.087734) | 0.057537 / 0.037052 (0.020485) | 0.458362 / 0.258489 (0.199873) | 0.518324 / 0.293841 (0.224483) | 0.056540 / 0.128546 (-0.072007) | 0.021266 / 0.075646 (-0.054380) | 0.448289 / 0.419271 (0.029018) | 0.064211 / 0.043533 (0.020678) | 0.492596 / 0.255139 (0.237457) | 0.495030 / 0.283200 (0.211830) | 0.121858 / 0.141683 (-0.019825) | 1.823821 / 1.452155 (0.371667) | 2.012165 / 1.492716 (0.519449) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.296252 / 0.018006 (0.278245) | 0.601688 / 0.000490 (0.601198) | 0.006369 / 0.000200 (0.006169) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035821 / 0.037411 (-0.001590) | 0.132722 / 0.014526 (0.118196) | 0.141819 / 0.176557 (-0.034738) | 0.205115 / 0.737135 (-0.532020) | 0.148917 / 0.296338 (-0.147422) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.678207 / 0.215209 (0.462998) | 6.969918 / 2.077655 (4.892263) | 3.077831 / 1.504120 (1.573711) | 2.689296 / 1.541195 (1.148102) | 2.706462 / 1.468490 (1.237972) | 1.249125 / 4.584777 (-3.335652) | 5.793917 / 3.745712 (2.048205) | 3.137565 / 5.269862 (-2.132297) | 2.056880 / 4.565676 (-2.508796) | 0.151918 / 0.424275 (-0.272357) | 0.015029 / 0.007607 (0.007422) | 0.833975 / 0.226044 (0.607930) | 8.575649 / 2.268929 (6.306720) | 3.812115 / 55.444624 (-51.632509) | 3.124219 / 6.876477 (-3.752258) | 3.178645 / 2.142072 (1.036572) | 1.488260 / 4.805227 (-3.316967) | 0.268239 / 6.500664 (-6.232425) | 0.089463 / 0.075469 (0.013993) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.645461 / 1.841788 (-0.196327) | 19.074412 / 8.074308 (11.000104) | 21.626726 / 10.191392 (11.435334) | 0.210525 / 0.680424 (-0.469899) | 0.032166 / 0.534201 (-0.502035) | 0.555572 / 0.579283 (-0.023711) | 0.654667 / 0.434364 (0.220303) | 0.632471 / 0.540337 (0.092133) | 0.756510 / 1.386936 (-0.630426) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6681c36bbaae9b8b1daa3dbbd4a96b35aaae271b \"CML watermark\")\n" ]
2023-01-23T07:53:38
2023-01-23T09:40:55
2023-01-23T08:31:17
The log messages do not match their if-condition. This PR swaps them. Found while investigating: - #5441 CC: @lhoestq
albertvillanova
https://github.com/huggingface/datasets/pull/5452
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5452", "html_url": "https://github.com/huggingface/datasets/pull/5452", "diff_url": "https://github.com/huggingface/datasets/pull/5452.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5452.patch", "merged_at": "2023-01-23T08:31:17" }
true
1,552,336,300
5,451
ImageFolder BadZipFile: Bad offset for central directory
closed
[ "Hi ! Could you share the full stack trace ? Which dataset did you try to load ?\r\n\r\nit may be related to https://github.com/huggingface/datasets/pull/5640", "The `BadZipFile` error means the ZIP file is corrupted, so I'm closing this issue as it's not directly related to `datasets`.", "For others that find this issue following a `BadZipFile` error, I had the same problem because I had a file in a folder dataset `my-image.target` and the datasets library was incorrectly determining that the (PNG) file was a zip archive. When it tried to extract the file, this error occurred. \r\n\r\nUpdating to `datasets==2.12.0` fixed the problem for me." ]
2023-01-22T23:50:12
2023-05-23T10:35:48
2023-02-10T16:31:36
### Describe the bug I'm getting the following exception: ``` lib/python3.10/zipfile.py:1353 in _RealGetContents โ”‚ โ”‚ โ”‚ โ”‚ 1350 โ”‚ โ”‚ # self.start_dir: Position of start of central directory โ”‚ โ”‚ 1351 โ”‚ โ”‚ self.start_dir = offset_cd + concat โ”‚ โ”‚ 1352 โ”‚ โ”‚ if self.start_dir < 0: โ”‚ โ”‚ โฑ 1353 โ”‚ โ”‚ โ”‚ raise BadZipFile("Bad offset for central directory") โ”‚ โ”‚ 1354 โ”‚ โ”‚ fp.seek(self.start_dir, 0) โ”‚ โ”‚ 1355 โ”‚ โ”‚ data = fp.read(size_cd) โ”‚ โ”‚ 1356 โ”‚ โ”‚ fp = io.BytesIO(data) โ”‚ โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ BadZipFile: Bad offset for central directory Extracting data files: 35%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 38572/110812 [00:10<00:20, 3576.26it/s] ``` ### Steps to reproduce the bug ``` load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ), ``` ### Expected behavior loads the dataset ### Environment info datasets==2.8.0 Python 3.10.8 Linux 129-146-3-202 5.15.0-52-generic #58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
hmartiro
https://github.com/huggingface/datasets/issues/5451
null
false
1,551,109,365
5,450
to_tf_dataset with a TF collator causes bizarrely persistent slowdown
closed
[ "wtf", "Couldn't find what's causing this, this will need more investigation", "A possible hint: The function it seems to be spending a lot of time in (when iterating over the original dataset) is `_get_mp` in the PIL JPEG decoder: \r\n![image](https://user-images.githubusercontent.com/12866554/214057267-c889f05e-efaf-4036-b805-c5381fa62f4a.png)\r\n", "If \"mp\" is multiprocessing, this might suggest some kind of negative interaction between the JPEG decoder and TF's handling of processes/threads. Note that we haven't merged the parallel `to_tf_dataset` PR yet, so it's not caused by that PR!", "Update: MP isn't multiprocessing at all, it's an internal PIL method for loading metadata from JPEG files. No idea why that would be a bottleneck, but I'll see if a Python profiler can't figure out where the time is actually being spent.", "After further profiling, the slowdown is in the C methods for JPEG decoding that are included as part of PIL. Because Python profilers can't inspect inside that, I don't have any further information on which lines exactly are responsible for the slowdown or why.\r\n\r\nIn the meantime, I'm going to suggest switching from `return_tensors=\"tf\"` to `return_tensors=\"np\"` in most of our `transformers` code - this generally works better for pre-processing. Two relevant PRs are [here](https://github.com/huggingface/transformers/pull/21266) and [here](https://github.com/huggingface/notebooks/pull/308).", "Closing this issue as we've done what we can with this one! " ]
2023-01-20T16:08:37
2023-02-13T14:13:34
2023-02-13T14:13:34
### Describe the bug This will make more sense if you take a look at [a Colab notebook that reproduces this issue.](https://colab.research.google.com/drive/1rxyeciQFWJTI0WrZ5aojp4Ls1ut18fNH?usp=sharing) Briefly, there are several datasets that, when you iterate over them with `to_tf_dataset` **and** a data collator that returns `tf` tensors, become very slow. We haven't been able to figure this one out - it can be intermittent, and we have no idea what could possibly cause it. The weirdest thing is that **the slowdown affects other attempts to access the underlying dataset**. If you try to iterate over the `tf.data.Dataset`, then interrupt execution, and then try to iterate over the original dataset, the original dataset is now also very slow! This is true even if the dataset format is not set to `tf` - the iteration is slow even though it's not calling TF at all! There is a simple workaround for this - we can simply get our data collators to return `np` tensors. When we do this, the bug is never triggered and everything is fine. In general, `np` is preferred for this kind of preprocessing work anyway, when the preprocessing is not going to be compiled into a pure `tf.data` pipeline! However, the issue is fascinating, and the TF team were wondering if anyone in datasets (cc @lhoestq @mariosasko) might have an idea of what could cause this. ### Steps to reproduce the bug Run the attached Colab. ### Expected behavior The slowdown should go away, or at least not persist after we stop iterating over the `tf.data.Dataset` ### Environment info The issue occurs on multiple versions of Python and TF, both on local machines and on Colab. All testing was done using the latest versions of `transformers` and `datasets` from `main`
Rocketknight1
https://github.com/huggingface/datasets/issues/5450
null
false
1,550,801,453
5,449
Support fsspec 2023.1.0 in CI
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008227 / 0.011353 (-0.003126) | 0.004496 / 0.011008 (-0.006512) | 0.099319 / 0.038508 (0.060811) | 0.029929 / 0.023109 (0.006820) | 0.296686 / 0.275898 (0.020788) | 0.355372 / 0.323480 (0.031892) | 0.006864 / 0.007986 (-0.001122) | 0.003458 / 0.004328 (-0.000871) | 0.077234 / 0.004250 (0.072983) | 0.037072 / 0.037052 (0.000020) | 0.311675 / 0.258489 (0.053186) | 0.338965 / 0.293841 (0.045124) | 0.033562 / 0.128546 (-0.094985) | 0.011399 / 0.075646 (-0.064248) | 0.322406 / 0.419271 (-0.096865) | 0.043034 / 0.043533 (-0.000499) | 0.298083 / 0.255139 (0.042944) | 0.323661 / 0.283200 (0.040462) | 0.089380 / 0.141683 (-0.052303) | 1.479363 / 1.452155 (0.027208) | 1.518337 / 1.492716 (0.025620) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.177822 / 0.018006 (0.159816) | 0.400806 / 0.000490 (0.400317) | 0.002121 / 0.000200 (0.001921) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021986 / 0.037411 (-0.015426) | 0.096749 / 0.014526 (0.082223) | 0.101443 / 0.176557 (-0.075113) | 0.137519 / 0.737135 (-0.599616) | 0.105558 / 0.296338 (-0.190780) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418983 / 0.215209 (0.203774) | 4.189579 / 2.077655 (2.111924) | 1.877831 / 1.504120 (0.373711) | 1.666213 / 1.541195 (0.125019) | 1.680735 / 1.468490 (0.212245) | 0.693033 / 4.584777 (-3.891744) | 3.420553 / 3.745712 (-0.325160) | 1.819647 / 5.269862 (-3.450214) | 1.144934 / 4.565676 (-3.420743) | 0.082209 / 0.424275 (-0.342066) | 0.012433 / 0.007607 (0.004826) | 0.526781 / 0.226044 (0.300737) | 5.273689 / 2.268929 (3.004760) | 2.323468 / 55.444624 (-53.121156) | 1.960508 / 6.876477 (-4.915969) | 2.035338 / 2.142072 (-0.106735) | 0.812789 / 4.805227 (-3.992438) | 0.148429 / 6.500664 (-6.352235) | 0.064727 / 0.075469 (-0.010742) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253218 / 1.841788 (-0.588569) | 13.303426 / 8.074308 (5.229118) | 13.651074 / 10.191392 (3.459682) | 0.135178 / 0.680424 (-0.545246) | 0.028483 / 0.534201 (-0.505717) | 0.393284 / 0.579283 (-0.185999) | 0.401957 / 0.434364 (-0.032407) | 0.457136 / 0.540337 (-0.083201) | 0.535835 / 1.386936 (-0.851101) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006335 / 0.011353 (-0.005017) | 0.004454 / 0.011008 (-0.006554) | 0.097565 / 0.038508 (0.059057) | 0.026917 / 0.023109 (0.003808) | 0.350779 / 0.275898 (0.074881) | 0.391979 / 0.323480 (0.068499) | 0.004648 / 0.007986 (-0.003337) | 0.003204 / 0.004328 (-0.001124) | 0.076987 / 0.004250 (0.072737) | 0.035257 / 0.037052 (-0.001796) | 0.347193 / 0.258489 (0.088704) | 0.391462 / 0.293841 (0.097621) | 0.031244 / 0.128546 (-0.097302) | 0.011460 / 0.075646 (-0.064186) | 0.321606 / 0.419271 (-0.097665) | 0.041218 / 0.043533 (-0.002315) | 0.341884 / 0.255139 (0.086745) | 0.374920 / 0.283200 (0.091720) | 0.086383 / 0.141683 (-0.055300) | 1.501750 / 1.452155 (0.049595) | 1.565060 / 1.492716 (0.072344) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.165447 / 0.018006 (0.147441) | 0.401885 / 0.000490 (0.401395) | 0.000975 / 0.000200 (0.000775) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024494 / 0.037411 (-0.012917) | 0.097334 / 0.014526 (0.082808) | 0.105324 / 0.176557 (-0.071232) | 0.142430 / 0.737135 (-0.594705) | 0.107249 / 0.296338 (-0.189089) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441632 / 0.215209 (0.226423) | 4.407729 / 2.077655 (2.330074) | 2.078167 / 1.504120 (0.574047) | 1.864210 / 1.541195 (0.323015) | 1.885948 / 1.468490 (0.417458) | 0.693974 / 4.584777 (-3.890803) | 3.386837 / 3.745712 (-0.358875) | 1.840291 / 5.269862 (-3.429571) | 1.150524 / 4.565676 (-3.415153) | 0.082240 / 0.424275 (-0.342035) | 0.012488 / 0.007607 (0.004881) | 0.537589 / 0.226044 (0.311545) | 5.404007 / 2.268929 (3.135078) | 2.537467 / 55.444624 (-52.907157) | 2.190775 / 6.876477 (-4.685702) | 2.224746 / 2.142072 (0.082674) | 0.799524 / 4.805227 (-4.005703) | 0.150639 / 6.500664 (-6.350025) | 0.066473 / 0.075469 (-0.008997) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258559 / 1.841788 (-0.583228) | 13.773583 / 8.074308 (5.699275) | 13.964322 / 10.191392 (3.772930) | 0.156295 / 0.680424 (-0.524129) | 0.016824 / 0.534201 (-0.517377) | 0.377476 / 0.579283 (-0.201807) | 0.390163 / 0.434364 (-0.044201) | 0.442541 / 0.540337 (-0.097796) | 0.529404 / 1.386936 (-0.857532) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8f500a5c554b213aafe87293bd593920567742c3 \"CML watermark\")\n" ]
2023-01-20T12:53:17
2023-01-20T13:32:50
2023-01-20T13:26:03
Support fsspec 2023.1.0 in CI. In the 2023.1.0 fsspec release, they replaced the type of `fsspec.registry`: - from `ReadOnlyRegistry`, with an attribute called `target` - to `MappingProxyType`, without that attribute Consequently, we need to change our `mock_fsspec` fixtures, that were using the `target` attribute. Fix #5448.
albertvillanova
https://github.com/huggingface/datasets/pull/5449
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5449", "html_url": "https://github.com/huggingface/datasets/pull/5449", "diff_url": "https://github.com/huggingface/datasets/pull/5449.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5449.patch", "merged_at": "2023-01-20T13:26:03" }
true
1,550,618,514
5,448
Support fsspec 2023.1.0 in CI
closed
[]
2023-01-20T10:26:31
2023-01-20T13:26:05
2023-01-20T13:26:05
Once we find out the root cause of: - #5445 we should revert the temporary pin on fsspec introduced by: - #5447
albertvillanova
https://github.com/huggingface/datasets/issues/5448
null
false
1,550,599,193
5,447
Fix CI by temporarily pinning fsspec < 2023.1.0
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011875 / 0.011353 (0.000522) | 0.008188 / 0.011008 (-0.002821) | 0.131137 / 0.038508 (0.092629) | 0.038127 / 0.023109 (0.015018) | 0.383864 / 0.275898 (0.107966) | 0.458617 / 0.323480 (0.135137) | 0.010989 / 0.007986 (0.003003) | 0.004892 / 0.004328 (0.000563) | 0.101955 / 0.004250 (0.097704) | 0.045081 / 0.037052 (0.008029) | 0.409768 / 0.258489 (0.151279) | 0.446597 / 0.293841 (0.152756) | 0.058588 / 0.128546 (-0.069958) | 0.020872 / 0.075646 (-0.054774) | 0.432982 / 0.419271 (0.013711) | 0.075875 / 0.043533 (0.032342) | 0.380923 / 0.255139 (0.125784) | 0.432994 / 0.283200 (0.149795) | 0.122678 / 0.141683 (-0.019005) | 1.857865 / 1.452155 (0.405710) | 1.927801 / 1.492716 (0.435085) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212941 / 0.018006 (0.194935) | 0.527977 / 0.000490 (0.527488) | 0.002996 / 0.000200 (0.002797) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030046 / 0.037411 (-0.007366) | 0.126384 / 0.014526 (0.111858) | 0.138307 / 0.176557 (-0.038250) | 0.185338 / 0.737135 (-0.551797) | 0.144733 / 0.296338 (-0.151606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627096 / 0.215209 (0.411887) | 6.418014 / 2.077655 (4.340360) | 2.547675 / 1.504120 (1.043555) | 2.195552 / 1.541195 (0.654357) | 2.200377 / 1.468490 (0.731887) | 1.289935 / 4.584777 (-3.294842) | 5.670839 / 3.745712 (1.925127) | 5.252597 / 5.269862 (-0.017265) | 2.878470 / 4.565676 (-1.687207) | 0.143754 / 0.424275 (-0.280521) | 0.014814 / 0.007607 (0.007207) | 0.810073 / 0.226044 (0.584028) | 8.183757 / 2.268929 (5.914829) | 3.375525 / 55.444624 (-52.069099) | 2.594048 / 6.876477 (-4.282428) | 2.598095 / 2.142072 (0.456023) | 1.554493 / 4.805227 (-3.250734) | 0.263159 / 6.500664 (-6.237505) | 0.089822 / 0.075469 (0.014353) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.660847 / 1.841788 (-0.180941) | 18.434283 / 8.074308 (10.359975) | 21.764887 / 10.191392 (11.573495) | 0.264524 / 0.680424 (-0.415900) | 0.048519 / 0.534201 (-0.485682) | 0.587468 / 0.579283 (0.008185) | 0.634142 / 0.434364 (0.199778) | 0.675374 / 0.540337 (0.135037) | 0.777510 / 1.386936 (-0.609426) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010021 / 0.011353 (-0.001332) | 0.006207 / 0.011008 (-0.004801) | 0.130490 / 0.038508 (0.091982) | 0.037957 / 0.023109 (0.014848) | 0.489381 / 0.275898 (0.213483) | 0.536522 / 0.323480 (0.213042) | 0.008611 / 0.007986 (0.000626) | 0.004894 / 0.004328 (0.000565) | 0.101617 / 0.004250 (0.097367) | 0.052629 / 0.037052 (0.015577) | 0.509211 / 0.258489 (0.250721) | 0.545023 / 0.293841 (0.251182) | 0.057468 / 0.128546 (-0.071078) | 0.023393 / 0.075646 (-0.052253) | 0.431408 / 0.419271 (0.012137) | 0.064967 / 0.043533 (0.021434) | 0.495261 / 0.255139 (0.240122) | 0.527098 / 0.283200 (0.243898) | 0.113172 / 0.141683 (-0.028511) | 1.937072 / 1.452155 (0.484918) | 2.048413 / 1.492716 (0.555697) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245406 / 0.018006 (0.227399) | 0.526772 / 0.000490 (0.526283) | 0.004379 / 0.000200 (0.004179) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031785 / 0.037411 (-0.005626) | 0.130949 / 0.014526 (0.116424) | 0.145660 / 0.176557 (-0.030896) | 0.186991 / 0.737135 (-0.550144) | 0.151000 / 0.296338 (-0.145338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.708643 / 0.215209 (0.493434) | 7.179252 / 2.077655 (5.101597) | 3.143375 / 1.504120 (1.639255) | 2.714298 / 1.541195 (1.173103) | 2.773441 / 1.468490 (1.304951) | 1.312821 / 4.584777 (-3.271956) | 5.798396 / 3.745712 (2.052684) | 3.253215 / 5.269862 (-2.016646) | 2.147260 / 4.565676 (-2.418416) | 0.154673 / 0.424275 (-0.269602) | 0.014918 / 0.007607 (0.007311) | 0.860618 / 0.226044 (0.634573) | 8.774455 / 2.268929 (6.505527) | 3.925020 / 55.444624 (-51.519604) | 3.139361 / 6.876477 (-3.737115) | 3.208883 / 2.142072 (1.066810) | 1.547305 / 4.805227 (-3.257922) | 0.268814 / 6.500664 (-6.231850) | 0.084578 / 0.075469 (0.009109) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.694990 / 1.841788 (-0.146798) | 18.619183 / 8.074308 (10.544875) | 21.929886 / 10.191392 (11.738494) | 0.265763 / 0.680424 (-0.414661) | 0.028325 / 0.534201 (-0.505876) | 0.552910 / 0.579283 (-0.026373) | 0.616864 / 0.434364 (0.182500) | 0.637858 / 0.540337 (0.097521) | 0.744508 / 1.386936 (-0.642428) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f819ba3d0306748aaf9fd8ea040b981dd08e5e5 \"CML watermark\")\n" ]
2023-01-20T10:11:02
2023-01-20T10:38:13
2023-01-20T10:28:43
Temporarily pin fsspec < 2023.1.0 Fix #5445.
albertvillanova
https://github.com/huggingface/datasets/pull/5447
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5447", "html_url": "https://github.com/huggingface/datasets/pull/5447", "diff_url": "https://github.com/huggingface/datasets/pull/5447.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5447.patch", "merged_at": "2023-01-20T10:28:43" }
true
1,550,591,588
5,446
test v0.12.0.rc0
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "@Wauplin I was testing it in a dedicated branch without opening a PR: https://github.com/huggingface/datasets/commits/test-hfh-0.12.0rc0", "Oops, sorry @albertvillanova. I thought for next time I'll start the CIs before pinging everyone.\r\nI'm closing this one.", "@Wauplin in your Slack message, you asked people from every major dependent library to check that our CI work. That is why I am checking it... :)\r\n\r\nAlso, I think for this purpose it is better to test it in a dedicated branch, rather than opening and closing a PR.", "Yes, yes I know. Completely my fault on this one" ]
2023-01-20T10:05:19
2023-01-20T10:43:22
2023-01-20T10:13:48
DO NOT MERGE. Only to test the CI. cc @lhoestq @albertvillanova
Wauplin
https://github.com/huggingface/datasets/pull/5446
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5446", "html_url": "https://github.com/huggingface/datasets/pull/5446", "diff_url": "https://github.com/huggingface/datasets/pull/5446.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5446.patch", "merged_at": null }
true
1,550,588,703
5,445
CI tests are broken: AttributeError: 'mappingproxy' object has no attribute 'target'
closed
[]
2023-01-20T10:03:10
2023-01-20T10:28:44
2023-01-20T10:28:44
CI tests are broken, raising `AttributeError: 'mappingproxy' object has no attribute 'target'`. See: https://github.com/huggingface/datasets/actions/runs/3966497597/jobs/6797384185 ``` ... ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://top_level-date=2019-10-0[1-4]/*-expected_paths4] - AttributeError: 'mappingproxy' object has no attribute 'target' ===== 2076 passed, 19 skipped, 15 warnings, 47 errors in 115.54s (0:01:55) ===== ```
albertvillanova
https://github.com/huggingface/datasets/issues/5445
null
false
1,550,185,071
5,444
info messages logged as warnings
closed
[ "Looks like a duplicate of https://github.com/huggingface/datasets/issues/1948. \r\n\r\nI also think these should be logged as INFO messages, but let's see what @lhoestq thinks.", "It can be considered unexpected to see a `map` function return instantaneously. The warning is here to explain this case by mentioning that the cache was used. I don't expect first time users (only seeing warnings) to guess that the cache works this way", "Oh, so it's intentional? Do all Hugging Face packages use `warning` when using cache?\r\nI guess feel free to close this issue then.", "Yes it's intentional for `map`. For `load_dataset` it's also intentional but for a different reason: it shows where in the cache the dataset is located, in case the user wants to clear the cache.", "OK I see. It's surprising to me that these are considered \"something unexpected happened\", the concept of cache is pretty common.\r\n\r\nHas a user every actually complained that they ran their code once, and it took a minute while the data downloaded, then ran their code again and it ran really fast (and completed successfully) but they were so baffled by the fact that it ran quickly, _and_ didn't set the log level to INFO, _and_ hadn't read the docs (or thought about it) to know that datasets are cached, that they logged an issue asking that this information be output as a warning every time they run their code?\r\n\r\nThat seems like a very niche scenario to cater for, given that the side effect is to flood the console with irrelevant warnings for every other user every other time they run a bit of `datasets` code. And the real world impact is that people TURN OFF warnings, which is a pretty bad habit to get into.\r\n\r\nAnyhoo, if there's no chance I'm going to change your mind, please close the issue :)", "I see your point and I'm not closed to switching to INFO, but I think those logs are important to make the library less opaque. I also just checked `transformers` scripts and they default to INFO which is nice. However for colab users the default is still WARNING iirc, and it counts as one of the main env where `datasets` is used.\r\n\r\nWe also use progress bars a lot in `datasets`, that are shown if the logger is at the WARNING level. But we offer a function to disable the progress bars if necessary.", "These kinds of messages are logged as INFO in Transformers, so we should probably be consistent with them" ]
2023-01-20T01:19:18
2023-07-12T17:19:31
2023-07-12T17:19:31
### Describe the bug Code in `datasets` is using `logger.warning` when it should be using `logger.info`. Some of these are probably a matter of opinion, but I think anything starting with `logger.warning(f"Loading chached` clearly falls into the info category. Definitions from the Python docs for reference: * INFO: Confirmation that things are working as expected. * WARNING: An indication that something unexpected happened, or indicative of some problem in the near future (e.g. โ€˜disk space lowโ€™). The software is still working as expected. In theory, a user should be able to resolve things such that there are no warnings. ### Steps to reproduce the bug Load any dataset that's already cached. ### Expected behavior No output when log level is at the default WARNING level. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 - Python version: 3.10.8 - PyArrow version: 9.0.0 - Pandas version: 1.5.2
davidgilbertson
https://github.com/huggingface/datasets/issues/5444
null
false
1,550,178,914
5,443
Update share tutorial
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009885 / 0.011353 (-0.001468) | 0.005338 / 0.011008 (-0.005670) | 0.099967 / 0.038508 (0.061459) | 0.036860 / 0.023109 (0.013751) | 0.295283 / 0.275898 (0.019385) | 0.369504 / 0.323480 (0.046024) | 0.008267 / 0.007986 (0.000281) | 0.004375 / 0.004328 (0.000046) | 0.076294 / 0.004250 (0.072043) | 0.047058 / 0.037052 (0.010006) | 0.314463 / 0.258489 (0.055974) | 0.348125 / 0.293841 (0.054284) | 0.038334 / 0.128546 (-0.090213) | 0.012102 / 0.075646 (-0.063544) | 0.333049 / 0.419271 (-0.086223) | 0.050727 / 0.043533 (0.007195) | 0.299244 / 0.255139 (0.044105) | 0.318210 / 0.283200 (0.035010) | 0.112609 / 0.141683 (-0.029074) | 1.450377 / 1.452155 (-0.001778) | 1.485177 / 1.492716 (-0.007539) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287083 / 0.018006 (0.269077) | 0.564268 / 0.000490 (0.563778) | 0.003578 / 0.000200 (0.003378) | 0.000093 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026755 / 0.037411 (-0.010657) | 0.105857 / 0.014526 (0.091331) | 0.118291 / 0.176557 (-0.058266) | 0.155735 / 0.737135 (-0.581401) | 0.122527 / 0.296338 (-0.173812) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396992 / 0.215209 (0.181783) | 3.958562 / 2.077655 (1.880908) | 1.781570 / 1.504120 (0.277451) | 1.617743 / 1.541195 (0.076549) | 1.753504 / 1.468490 (0.285013) | 0.681509 / 4.584777 (-3.903268) | 3.816910 / 3.745712 (0.071198) | 2.087359 / 5.269862 (-3.182503) | 1.328380 / 4.565676 (-3.237297) | 0.083542 / 0.424275 (-0.340733) | 0.012081 / 0.007607 (0.004473) | 0.505127 / 0.226044 (0.279082) | 5.075136 / 2.268929 (2.806208) | 2.259871 / 55.444624 (-53.184753) | 1.944302 / 6.876477 (-4.932175) | 2.102624 / 2.142072 (-0.039449) | 0.819779 / 4.805227 (-3.985448) | 0.165584 / 6.500664 (-6.335080) | 0.061774 / 0.075469 (-0.013695) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.208258 / 1.841788 (-0.633530) | 14.841635 / 8.074308 (6.767327) | 14.484515 / 10.191392 (4.293123) | 0.156464 / 0.680424 (-0.523959) | 0.028839 / 0.534201 (-0.505362) | 0.440860 / 0.579283 (-0.138423) | 0.433892 / 0.434364 (-0.000472) | 0.515339 / 0.540337 (-0.024998) | 0.608838 / 1.386936 (-0.778098) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007548 / 0.011353 (-0.003804) | 0.005464 / 0.011008 (-0.005544) | 0.096987 / 0.038508 (0.058479) | 0.034472 / 0.023109 (0.011363) | 0.391249 / 0.275898 (0.115351) | 0.432779 / 0.323480 (0.109299) | 0.006170 / 0.007986 (-0.001816) | 0.004316 / 0.004328 (-0.000013) | 0.074184 / 0.004250 (0.069934) | 0.054254 / 0.037052 (0.017202) | 0.397947 / 0.258489 (0.139458) | 0.451253 / 0.293841 (0.157412) | 0.037098 / 0.128546 (-0.091449) | 0.012649 / 0.075646 (-0.062997) | 0.333533 / 0.419271 (-0.085739) | 0.050247 / 0.043533 (0.006714) | 0.390446 / 0.255139 (0.135307) | 0.410547 / 0.283200 (0.127347) | 0.110888 / 0.141683 (-0.030795) | 1.452160 / 1.452155 (0.000006) | 1.596331 / 1.492716 (0.103615) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256061 / 0.018006 (0.238055) | 0.552674 / 0.000490 (0.552184) | 0.003362 / 0.000200 (0.003162) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030199 / 0.037411 (-0.007213) | 0.110288 / 0.014526 (0.095762) | 0.127412 / 0.176557 (-0.049145) | 0.165428 / 0.737135 (-0.571707) | 0.131658 / 0.296338 (-0.164680) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441946 / 0.215209 (0.226737) | 4.414209 / 2.077655 (2.336555) | 2.284530 / 1.504120 (0.780410) | 2.110752 / 1.541195 (0.569557) | 2.210751 / 1.468490 (0.742260) | 0.698829 / 4.584777 (-3.885948) | 3.819044 / 3.745712 (0.073332) | 3.274021 / 5.269862 (-1.995840) | 1.781284 / 4.565676 (-2.784393) | 0.085264 / 0.424275 (-0.339011) | 0.012360 / 0.007607 (0.004753) | 0.553519 / 0.226044 (0.327475) | 5.466395 / 2.268929 (3.197467) | 2.825839 / 55.444624 (-52.618786) | 2.439451 / 6.876477 (-4.437026) | 2.582534 / 2.142072 (0.440462) | 0.841644 / 4.805227 (-3.963583) | 0.172288 / 6.500664 (-6.328376) | 0.067215 / 0.075469 (-0.008254) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283623 / 1.841788 (-0.558165) | 15.753163 / 8.074308 (7.678855) | 14.983263 / 10.191392 (4.791871) | 0.187584 / 0.680424 (-0.492840) | 0.017999 / 0.534201 (-0.516202) | 0.427157 / 0.579283 (-0.152126) | 0.435456 / 0.434364 (0.001092) | 0.496800 / 0.540337 (-0.043537) | 0.592557 / 1.386936 (-0.794379) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8a72676689a4a3fb466cc5077884446c7302e605 \"CML watermark\")\n" ]
2023-01-20T01:09:14
2023-01-20T15:44:45
2023-01-20T15:37:30
Based on feedback from discussion #5423, this PR updates the sharing tutorial with a mention of writing your own dataset loading script to support more advanced dataset creation options like multiple configs. I'll open a separate PR to update the *Create a Dataset card* with the new Hub metadata UI update ๐Ÿ˜„
stevhliu
https://github.com/huggingface/datasets/pull/5443
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5443", "html_url": "https://github.com/huggingface/datasets/pull/5443", "diff_url": "https://github.com/huggingface/datasets/pull/5443.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5443.patch", "merged_at": "2023-01-20T15:37:30" }
true
1,550,084,450
5,442
OneDrive Integrations with HF Datasets
closed
[ "Hi! \r\n\r\nWe use [`fsspec`](https://github.com/fsspec/filesystem_spec) to integrate with storage providers. You can find more info (and the usage examples) in [our docs](https://huggingface.co/docs/datasets/v2.8.0/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage).\r\n\r\n[`gdrivefs`](https://github.com/fsspec/gdrivefs) makes it possible to use Google Drive as a storage service in Datasets, but this is not the case for OneDrive, since its[ Python SDK](https://github.com/OneDrive/onedrive-sdk-python) is not integrated with `fsspec`. Can you please request the integration with `fsspec` in their repo to address this limitation?", "I'm closing this issue as implementing a fsspec-compliant OneDrive filesystem is not our responsibility." ]
2023-01-19T23:12:08
2023-02-24T16:17:51
2023-02-24T16:17:51
### Feature request First of all , I would like to thank all community who are developed DataSet storage and make it free available How to integrate our Onedrive account or any other possible storage clouds (like google drive,...) with the **HF** datasets section. For example, if I have **50GB** on my **Onedrive** account and I want to move between drive and Hugging face repo or vis versa ### Motivation make the dataset section more flexible with other possible storage like the integration between Google Collab and Google drive the storage ### Your contribution Can be done using Hugging face CLI
Mohammed20201991
https://github.com/huggingface/datasets/issues/5442
null
false
1,548,417,594
5,441
resolving a weird tar extract issue
open
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011815 / 0.011353 (0.000463) | 0.006407 / 0.011008 (-0.004601) | 0.132937 / 0.038508 (0.094429) | 0.040634 / 0.023109 (0.017525) | 0.398049 / 0.275898 (0.122151) | 0.498207 / 0.323480 (0.174727) | 0.010111 / 0.007986 (0.002126) | 0.007282 / 0.004328 (0.002954) | 0.103661 / 0.004250 (0.099411) | 0.046223 / 0.037052 (0.009171) | 0.411490 / 0.258489 (0.153001) | 0.480973 / 0.293841 (0.187132) | 0.058397 / 0.128546 (-0.070149) | 0.019952 / 0.075646 (-0.055695) | 0.440734 / 0.419271 (0.021463) | 0.064585 / 0.043533 (0.021052) | 0.392556 / 0.255139 (0.137417) | 0.437842 / 0.283200 (0.154643) | 0.130684 / 0.141683 (-0.010999) | 1.910552 / 1.452155 (0.458397) | 1.984644 / 1.492716 (0.491927) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264417 / 0.018006 (0.246411) | 0.676519 / 0.000490 (0.676030) | 0.003369 / 0.000200 (0.003169) | 0.000125 / 0.000054 (0.000071) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034558 / 0.037411 (-0.002854) | 0.126561 / 0.014526 (0.112035) | 0.134478 / 0.176557 (-0.042079) | 0.202125 / 0.737135 (-0.535010) | 0.143273 / 0.296338 (-0.153066) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.618592 / 0.215209 (0.403383) | 6.224435 / 2.077655 (4.146780) | 2.636689 / 1.504120 (1.132569) | 2.243507 / 1.541195 (0.702313) | 2.312449 / 1.468490 (0.843959) | 1.188499 / 4.584777 (-3.396277) | 5.738347 / 3.745712 (1.992635) | 4.891933 / 5.269862 (-0.377929) | 2.697631 / 4.565676 (-1.868046) | 0.140200 / 0.424275 (-0.284076) | 0.015484 / 0.007607 (0.007877) | 0.781947 / 0.226044 (0.555903) | 7.946600 / 2.268929 (5.677671) | 3.365574 / 55.444624 (-52.079050) | 2.783443 / 6.876477 (-4.093034) | 2.738634 / 2.142072 (0.596561) | 1.487247 / 4.805227 (-3.317980) | 0.255681 / 6.500664 (-6.244983) | 0.084607 / 0.075469 (0.009138) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.717846 / 1.841788 (-0.123941) | 18.405566 / 8.074308 (10.331258) | 20.508578 / 10.191392 (10.317186) | 0.262364 / 0.680424 (-0.418060) | 0.050881 / 0.534201 (-0.483319) | 0.587516 / 0.579283 (0.008232) | 0.650900 / 0.434364 (0.216536) | 0.656168 / 0.540337 (0.115830) | 0.778876 / 1.386936 (-0.608061) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010817 / 0.011353 (-0.000536) | 0.007338 / 0.011008 (-0.003670) | 0.131949 / 0.038508 (0.093441) | 0.037244 / 0.023109 (0.014135) | 0.565994 / 0.275898 (0.290096) | 0.567434 / 0.323480 (0.243954) | 0.007733 / 0.007986 (-0.000252) | 0.005216 / 0.004328 (0.000887) | 0.096578 / 0.004250 (0.092328) | 0.056001 / 0.037052 (0.018949) | 0.538209 / 0.258489 (0.279720) | 0.580385 / 0.293841 (0.286544) | 0.053654 / 0.128546 (-0.074892) | 0.019471 / 0.075646 (-0.056176) | 0.448781 / 0.419271 (0.029509) | 0.064774 / 0.043533 (0.021241) | 0.540222 / 0.255139 (0.285083) | 0.563058 / 0.283200 (0.279858) | 0.122716 / 0.141683 (-0.018967) | 1.839402 / 1.452155 (0.387247) | 1.915523 / 1.492716 (0.422806) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310448 / 0.018006 (0.292442) | 0.603664 / 0.000490 (0.603175) | 0.004833 / 0.000200 (0.004633) | 0.000145 / 0.000054 (0.000090) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032340 / 0.037411 (-0.005072) | 0.130115 / 0.014526 (0.115589) | 0.154192 / 0.176557 (-0.022364) | 0.200655 / 0.737135 (-0.536480) | 0.144961 / 0.296338 (-0.151377) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671588 / 0.215209 (0.456379) | 6.691642 / 2.077655 (4.613988) | 2.915230 / 1.504120 (1.411110) | 2.573337 / 1.541195 (1.032143) | 2.578204 / 1.468490 (1.109714) | 1.249028 / 4.584777 (-3.335749) | 5.808539 / 3.745712 (2.062827) | 3.079317 / 5.269862 (-2.190545) | 2.033308 / 4.565676 (-2.532369) | 0.142411 / 0.424275 (-0.281864) | 0.015525 / 0.007607 (0.007918) | 0.800389 / 0.226044 (0.574345) | 8.228236 / 2.268929 (5.959308) | 3.660207 / 55.444624 (-51.784417) | 3.021033 / 6.876477 (-3.855444) | 3.088335 / 2.142072 (0.946263) | 1.380137 / 4.805227 (-3.425091) | 0.252065 / 6.500664 (-6.248599) | 0.084302 / 0.075469 (0.008833) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.709429 / 1.841788 (-0.132359) | 18.358770 / 8.074308 (10.284462) | 21.109844 / 10.191392 (10.918452) | 0.231549 / 0.680424 (-0.448875) | 0.029251 / 0.534201 (-0.504950) | 0.560719 / 0.579283 (-0.018564) | 0.610125 / 0.434364 (0.175761) | 0.630015 / 0.540337 (0.089678) | 0.751656 / 1.386936 (-0.635280) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#18baf4eebf71c0db1d9980f7ee164f1272ff8f26 \"CML watermark\")\n", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5441). All of your documentation changes will be reflected on that endpoint.", "I think I managed to reproduce it:\r\n\r\n```\r\nrm -rf ~/.cache/huggingface/datasets/HuggingFaceM4___cm4-synthetic-testing\r\nmkdir -p /tmp/xxx/hf-data\r\nsudo ln -s /tmp/xxx /test\r\nmkdir -p /tmp/yyy\r\nln -sf /test/hf-data /tmp/yyy/data\r\ncd /tmp/yyy\r\npython -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/cm4-synthetic-testing\r\n```\r\n\r\nPlease note it includes a creation of a symlink from the `/` (so `sudo`) - may be there is a simpler way but I'm just trying to replicate the real setup. Of course please be careful - it's mostly under `/tmp` not to destroy anything if you try to run this.\r\n\r\nthis fails with:\r\n\r\n```\r\nNo config specified, defaulting to: cm4-synthetic-testing/100.unique\r\nDownloading and preparing dataset cm4-synthetic-testing/100.unique (download: 20.71 KiB, generated: 49.99 MiB, post-processed: Unknown size, total: 50.01 MiB) to /home/stas/.cache/huggingface/datasets/HuggingFaceM4___cm4-synthetic-testing/100.unique/1.1.1/2e33dcc086c7209b8ccff4b19e44f1d41b5be53262e7d793142b96c2e984602b...\r\nExtraction of data is blocked (illegal path: /tmp/yyy)\r\n[...]\r\nExtraction of data/115/texts_03.txt is blocked (illegal path: /tmp/yyy)\r\nGenerating 100.unique split: 0%| | 0/100 [00:00<?, ? examples/s]Generating 100-long unique records split\r\n\r\nTraceback (most recent call last):\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 1571, in _prepare_split_single\r\n for key, record in generator:\r\n File \"/home/stas/.cache/huggingface/modules/datasets_modules/datasets/HuggingFaceM4--cm4-synthetic-testing/2e33dcc086c7209b8ccff4b19e44f1d41b5be53262e7d793142b96c2e984602b/cm4-synthetic-testing.py\", line 190, in _generate_examples\r\n raise ValueError(f\"can't find any data - check {data_path}\")\r\nValueError: can't find any data - check /home/stas/.cache/huggingface/datasets/downloads/extracted/134227b9b94c4eccf19b205bf3021d4492d0227b9be6c2ddb6bf517d8d55a8cb/data\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"<string>\", line 1, in <module>\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/load.py\", line 1757, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 860, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 1612, in _download_and_prepare\r\n super()._download_and_prepare(\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 953, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 1450, in _prepare_split\r\n for job_id, done, content in self._prepare_split_single(\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 1607, in _prepare_split_single\r\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\r\ndatasets.builder.DatasetGenerationError: An error occurred while generating the dataset\r\n```\r\n\r\nnote that `illegal path: /tmp/yyy` is now with the mods of this PR.\r\n\r\n----------------------\r\n\r\nAlso I think the whole thing should have failed at the first `illegal path` and not continue running. But as it continued and gave:\r\n\r\n\r\n> ValueError: can't find any data - check /home/stas/.cache/huggingface/datasets/downloads/extracted/134227b9b94c4eccf19b205bf3021d4492d0227b9be6c2ddb6bf517d8d55a8cb/data\r\n\r\nwhat can a user do with that other than confirming that that dir is indeed empty, but no clue is given to why and it's far from obvious that one needs to scroll up and discover earlier issues. Most users won't do that.\r\n\r\n(my apologies for writing out so much - was trying to make the situation clear)", "Thank you, Albert, for the explanation.\r\n\r\nTo summarize I think what's needed is:\r\n\r\n1. add a comment in the code to why this is done for someone being puzzled over the odd code\r\n2. and to use an actionable by the user error message\r\n3. perform an untrapped assert on that tar extract error and not continue, so that the user will not get a later misleading error that the folder is empty and is completely not actionable and it's is far from obvious that one needs to scroll up to find earlier errors, which were trapped.\r\n\r\nAfter reading the advisory I'm still not sure why `cwd` is used and not a designated `~/.cache/huggingface/datasets/downloads/extracted`, I can't see what difference does it make since I could `chdir` to the designated directory and it would be `cwd`. The security solution is trying to ensure that `/etc/passwd` won't get overriden. So why is the check done in `.` and not the real target base directory, since the extraction isn't done in the current working dir. By not using `.` you lower the chances that the user will have all sorts of local symlinks that could trigger the issue since `datasets` typically is the only one managing it's `~/.cache/huggingface/datasets` domain and 99.9% of the time the user won't manually create files in it.\r\n\r\nthank you!\r\n" ]
2023-01-19T02:17:21
2023-01-20T16:49:22
null
ok, every so often, I have been getting a strange failure on dataset install: ``` $ python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing No config specified, defaulting to: general-pmd-synthetic-testing/100.unique Downloading and preparing dataset general-pmd-synthetic-testing/100.unique (download: 3.21 KiB, generated: 16.01 MiB, post-processed: Unknown size, total: 16.02 MiB) to /home/stas/.cache/huggingface/datasets/HuggingFaceM4___general-pmd-synthetic-testing/100.unique/1.1.1/86bc445e3e48cb5ef79de109eb4e54ff85b318cd55c3835c4ee8f86eae33d9d2... Extraction of data is blocked (illegal path) Extraction of data/1 is blocked (illegal path) Extraction of data/1/text.null is blocked (illegal path) [...] ``` I had no idea what to do with that - what in the world does **illegal path** mean? I started looking at the code in `TarExtractor` and added a debug print of `base` so that told me that there was a problem with the current directory - which was a clone of one of the hf repos. This particular dataset extracts into a directory `data` and the current dir I was running the tests from already had `data` in it which was a symbolic link to another partition and somehow all that `badpath` code was blowing up there. https://github.com/huggingface/datasets/blob/80eb8db74f49b7ee9c0f73a819c22177fabd61db/src/datasets/utils/extract.py#L113-L114 I tried hard to come up with a repro, but no matter what I tried it only fails in that particular clone directory that has a `data` symlink and not anywhere else. In any case, in this PR I'm proposing to at least give a user a hint of what seems to be an issue. I'm not at all happy with the info I got with this proposed change, but at least it gave me a hint that `TarExtractor` tries to extract into the current directory without any respect to pre-existing files. Say what? https://github.com/huggingface/datasets/blob/80eb8db74f49b7ee9c0f73a819c22177fabd61db/src/datasets/utils/extract.py#L110 why won't it use the `datasets` designated directory for that? There would never be a problem if it were to do that. I had to look at all those `resolved`, `badpath` calls and see what it did and why it failed, since it was far from obvious. It appeared like it resolved a symlink and compared it to the original path which of course wasn't matching. So perhaps you have a better solution than what I proposed in this PR. I think that code line I quoted is the one that should be fixed instead. But if you can't think of a better solution let's merge this at least so that the user will have a clue that the current dir is somehow involved. p.s. I double checked that if I remove the pre-existing `data` symlink in the current dir I'm running the dataset install command from, the problem goes away too. Thanks.
stas00
https://github.com/huggingface/datasets/pull/5441
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5441", "html_url": "https://github.com/huggingface/datasets/pull/5441", "diff_url": "https://github.com/huggingface/datasets/pull/5441.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5441.patch", "merged_at": null }
true
1,538,361,143
5,440
Fix documentation about batch samplers
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008874 / 0.011353 (-0.002479) | 0.004685 / 0.011008 (-0.006323) | 0.101478 / 0.038508 (0.062970) | 0.031409 / 0.023109 (0.008300) | 0.305429 / 0.275898 (0.029531) | 0.371777 / 0.323480 (0.048297) | 0.007282 / 0.007986 (-0.000704) | 0.005545 / 0.004328 (0.001217) | 0.078583 / 0.004250 (0.074333) | 0.037171 / 0.037052 (0.000118) | 0.320186 / 0.258489 (0.061696) | 0.347881 / 0.293841 (0.054040) | 0.034005 / 0.128546 (-0.094541) | 0.011534 / 0.075646 (-0.064113) | 0.326079 / 0.419271 (-0.093193) | 0.040856 / 0.043533 (-0.002677) | 0.307327 / 0.255139 (0.052188) | 0.323521 / 0.283200 (0.040321) | 0.090407 / 0.141683 (-0.051276) | 1.481994 / 1.452155 (0.029840) | 1.490372 / 1.492716 (-0.002345) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.175161 / 0.018006 (0.157155) | 0.447009 / 0.000490 (0.446519) | 0.003570 / 0.000200 (0.003370) | 0.000072 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023868 / 0.037411 (-0.013543) | 0.100791 / 0.014526 (0.086265) | 0.108131 / 0.176557 (-0.068425) | 0.147993 / 0.737135 (-0.589142) | 0.111205 / 0.296338 (-0.185133) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425369 / 0.215209 (0.210160) | 4.241694 / 2.077655 (2.164040) | 2.145403 / 1.504120 (0.641283) | 1.913517 / 1.541195 (0.372322) | 1.887307 / 1.468490 (0.418817) | 0.691615 / 4.584777 (-3.893162) | 3.402233 / 3.745712 (-0.343480) | 1.992532 / 5.269862 (-3.277330) | 1.322292 / 4.565676 (-3.243385) | 0.082862 / 0.424275 (-0.341413) | 0.012595 / 0.007607 (0.004988) | 0.528490 / 0.226044 (0.302445) | 5.313338 / 2.268929 (3.044409) | 2.645037 / 55.444624 (-52.799587) | 2.326279 / 6.876477 (-4.550198) | 2.396955 / 2.142072 (0.254883) | 0.819354 / 4.805227 (-3.985873) | 0.150889 / 6.500664 (-6.349775) | 0.066517 / 0.075469 (-0.008952) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.233673 / 1.841788 (-0.608114) | 14.563293 / 8.074308 (6.488985) | 14.317989 / 10.191392 (4.126597) | 0.150767 / 0.680424 (-0.529657) | 0.028972 / 0.534201 (-0.505229) | 0.400547 / 0.579283 (-0.178736) | 0.402267 / 0.434364 (-0.032097) | 0.459375 / 0.540337 (-0.080962) | 0.544419 / 1.386936 (-0.842517) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006817 / 0.011353 (-0.004536) | 0.004588 / 0.011008 (-0.006421) | 0.099224 / 0.038508 (0.060716) | 0.027730 / 0.023109 (0.004621) | 0.412310 / 0.275898 (0.136412) | 0.445731 / 0.323480 (0.122252) | 0.005197 / 0.007986 (-0.002788) | 0.003601 / 0.004328 (-0.000728) | 0.076200 / 0.004250 (0.071950) | 0.041813 / 0.037052 (0.004761) | 0.415282 / 0.258489 (0.156793) | 0.457182 / 0.293841 (0.163341) | 0.031920 / 0.128546 (-0.096626) | 0.011712 / 0.075646 (-0.063934) | 0.320859 / 0.419271 (-0.098412) | 0.041466 / 0.043533 (-0.002067) | 0.418156 / 0.255139 (0.163017) | 0.435501 / 0.283200 (0.152302) | 0.090727 / 0.141683 (-0.050955) | 1.484014 / 1.452155 (0.031859) | 1.568072 / 1.492716 (0.075356) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263356 / 0.018006 (0.245350) | 0.410768 / 0.000490 (0.410278) | 0.015983 / 0.000200 (0.015783) | 0.000301 / 0.000054 (0.000246) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024522 / 0.037411 (-0.012889) | 0.103986 / 0.014526 (0.089460) | 0.109253 / 0.176557 (-0.067303) | 0.142308 / 0.737135 (-0.594827) | 0.114037 / 0.296338 (-0.182302) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.452617 / 0.215209 (0.237407) | 4.505215 / 2.077655 (2.427560) | 2.185546 / 1.504120 (0.681426) | 1.995540 / 1.541195 (0.454345) | 1.962875 / 1.468490 (0.494385) | 0.690237 / 4.584777 (-3.894540) | 3.448311 / 3.745712 (-0.297401) | 1.901572 / 5.269862 (-3.368289) | 1.170832 / 4.565676 (-3.394844) | 0.082333 / 0.424275 (-0.341942) | 0.012569 / 0.007607 (0.004962) | 0.547822 / 0.226044 (0.321778) | 5.504180 / 2.268929 (3.235251) | 2.693981 / 55.444624 (-52.750644) | 2.320710 / 6.876477 (-4.555767) | 2.270508 / 2.142072 (0.128435) | 0.803145 / 4.805227 (-4.002083) | 0.152168 / 6.500664 (-6.348496) | 0.067408 / 0.075469 (-0.008061) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260689 / 1.841788 (-0.581099) | 14.281112 / 8.074308 (6.206804) | 14.549742 / 10.191392 (4.358350) | 0.129337 / 0.680424 (-0.551087) | 0.017181 / 0.534201 (-0.517020) | 0.380473 / 0.579283 (-0.198810) | 0.387689 / 0.434364 (-0.046675) | 0.446734 / 0.540337 (-0.093603) | 0.532479 / 1.386936 (-0.854457) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7972a0b5f1ad2c36023a79686f6ef026f4ffa64f \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008953 / 0.011353 (-0.002400) | 0.004917 / 0.011008 (-0.006091) | 0.098699 / 0.038508 (0.060191) | 0.034460 / 0.023109 (0.011351) | 0.294604 / 0.275898 (0.018706) | 0.322709 / 0.323480 (-0.000770) | 0.007780 / 0.007986 (-0.000206) | 0.004061 / 0.004328 (-0.000267) | 0.076134 / 0.004250 (0.071883) | 0.043786 / 0.037052 (0.006734) | 0.302155 / 0.258489 (0.043666) | 0.339779 / 0.293841 (0.045938) | 0.038305 / 0.128546 (-0.090241) | 0.012131 / 0.075646 (-0.063515) | 0.332656 / 0.419271 (-0.086615) | 0.048029 / 0.043533 (0.004496) | 0.303859 / 0.255139 (0.048720) | 0.315861 / 0.283200 (0.032662) | 0.100758 / 0.141683 (-0.040925) | 1.468072 / 1.452155 (0.015918) | 1.521325 / 1.492716 (0.028609) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244975 / 0.018006 (0.226969) | 0.524392 / 0.000490 (0.523902) | 0.003720 / 0.000200 (0.003520) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027704 / 0.037411 (-0.009707) | 0.109048 / 0.014526 (0.094522) | 0.118298 / 0.176557 (-0.058259) | 0.158748 / 0.737135 (-0.578388) | 0.125654 / 0.296338 (-0.170684) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406973 / 0.215209 (0.191764) | 4.057502 / 2.077655 (1.979847) | 1.939847 / 1.504120 (0.435727) | 1.746457 / 1.541195 (0.205262) | 1.698866 / 1.468490 (0.230376) | 0.692884 / 4.584777 (-3.891893) | 3.736988 / 3.745712 (-0.008724) | 2.050122 / 5.269862 (-3.219740) | 1.299808 / 4.565676 (-3.265868) | 0.085285 / 0.424275 (-0.338990) | 0.012768 / 0.007607 (0.005161) | 0.510814 / 0.226044 (0.284770) | 5.105319 / 2.268929 (2.836391) | 2.304003 / 55.444624 (-53.140621) | 1.951123 / 6.876477 (-4.925354) | 1.998504 / 2.142072 (-0.143568) | 0.840235 / 4.805227 (-3.964993) | 0.164521 / 6.500664 (-6.336143) | 0.064215 / 0.075469 (-0.011254) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272520 / 1.841788 (-0.569268) | 14.648110 / 8.074308 (6.573802) | 14.573754 / 10.191392 (4.382362) | 0.170053 / 0.680424 (-0.510371) | 0.029389 / 0.534201 (-0.504811) | 0.438924 / 0.579283 (-0.140359) | 0.433572 / 0.434364 (-0.000792) | 0.517702 / 0.540337 (-0.022635) | 0.600389 / 1.386936 (-0.786547) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007362 / 0.011353 (-0.003991) | 0.005451 / 0.011008 (-0.005557) | 0.099336 / 0.038508 (0.060828) | 0.033284 / 0.023109 (0.010174) | 0.377143 / 0.275898 (0.101245) | 0.423724 / 0.323480 (0.100244) | 0.006194 / 0.007986 (-0.001792) | 0.004208 / 0.004328 (-0.000121) | 0.074473 / 0.004250 (0.070223) | 0.049874 / 0.037052 (0.012821) | 0.376012 / 0.258489 (0.117523) | 0.439942 / 0.293841 (0.146101) | 0.037860 / 0.128546 (-0.090686) | 0.012546 / 0.075646 (-0.063100) | 0.349123 / 0.419271 (-0.070148) | 0.048980 / 0.043533 (0.005447) | 0.391205 / 0.255139 (0.136066) | 0.396474 / 0.283200 (0.113274) | 0.105846 / 0.141683 (-0.035836) | 1.502475 / 1.452155 (0.050321) | 1.612303 / 1.492716 (0.119587) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300815 / 0.018006 (0.282809) | 0.542171 / 0.000490 (0.541681) | 0.005465 / 0.000200 (0.005265) | 0.000094 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028904 / 0.037411 (-0.008508) | 0.110352 / 0.014526 (0.095827) | 0.123275 / 0.176557 (-0.053282) | 0.161958 / 0.737135 (-0.575178) | 0.133595 / 0.296338 (-0.162743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438724 / 0.215209 (0.223515) | 4.373633 / 2.077655 (2.295979) | 2.178981 / 1.504120 (0.674861) | 1.992442 / 1.541195 (0.451247) | 2.063149 / 1.468490 (0.594659) | 0.696688 / 4.584777 (-3.888089) | 3.849370 / 3.745712 (0.103658) | 3.509495 / 5.269862 (-1.760367) | 1.923320 / 4.565676 (-2.642356) | 0.085554 / 0.424275 (-0.338721) | 0.012510 / 0.007607 (0.004903) | 0.535953 / 0.226044 (0.309909) | 5.365684 / 2.268929 (3.096755) | 2.686902 / 55.444624 (-52.757723) | 2.330922 / 6.876477 (-4.545554) | 2.353445 / 2.142072 (0.211373) | 0.878336 / 4.805227 (-3.926891) | 0.167296 / 6.500664 (-6.333368) | 0.064564 / 0.075469 (-0.010905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244696 / 1.841788 (-0.597091) | 15.027981 / 8.074308 (6.953673) | 14.545797 / 10.191392 (4.354405) | 0.147229 / 0.680424 (-0.533194) | 0.018007 / 0.534201 (-0.516194) | 0.446196 / 0.579283 (-0.133087) | 0.437418 / 0.434364 (0.003054) | 0.510732 / 0.540337 (-0.029606) | 0.594814 / 1.386936 (-0.792122) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#80eb8db74f49b7ee9c0f73a819c22177fabd61db \"CML watermark\")\n" ]
2023-01-18T17:04:27
2023-01-18T17:57:29
2023-01-18T17:50:04
null
thomasw21
https://github.com/huggingface/datasets/pull/5440
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5440", "html_url": "https://github.com/huggingface/datasets/pull/5440", "diff_url": "https://github.com/huggingface/datasets/pull/5440.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5440.patch", "merged_at": "2023-01-18T17:50:04" }
true
1,537,973,564
5,439
[dataset request] Add Common Voice 12.0
closed
[ "@polinaeterna any tentative date on when the Common Voice 12.0 dataset will be added ?", "This dataset is now hosted on the Hub here: https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0" ]
2023-01-18T13:07:05
2023-07-21T14:26:10
2023-07-21T14:26:09
### Feature request Please add the common voice 12_0 datasets. Apart from English, a significant amount of audio-data has been added to the other minor-language datasets. ### Motivation The dataset link: https://commonvoice.mozilla.org/en/datasets
MohammedRakib
https://github.com/huggingface/datasets/issues/5439
null
false
1,537,489,730
5,438
Update actions/checkout in CD Conda release
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008470 / 0.011353 (-0.002883) | 0.004721 / 0.011008 (-0.006287) | 0.099024 / 0.038508 (0.060516) | 0.029831 / 0.023109 (0.006722) | 0.325887 / 0.275898 (0.049989) | 0.380753 / 0.323480 (0.057273) | 0.007101 / 0.007986 (-0.000885) | 0.004734 / 0.004328 (0.000406) | 0.077576 / 0.004250 (0.073326) | 0.037207 / 0.037052 (0.000154) | 0.320463 / 0.258489 (0.061974) | 0.369284 / 0.293841 (0.075443) | 0.033411 / 0.128546 (-0.095135) | 0.011610 / 0.075646 (-0.064037) | 0.321460 / 0.419271 (-0.097811) | 0.041315 / 0.043533 (-0.002217) | 0.349186 / 0.255139 (0.094047) | 0.384546 / 0.283200 (0.101347) | 0.088045 / 0.141683 (-0.053637) | 1.536341 / 1.452155 (0.084186) | 1.527806 / 1.492716 (0.035089) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193435 / 0.018006 (0.175429) | 0.451732 / 0.000490 (0.451243) | 0.003165 / 0.000200 (0.002965) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023203 / 0.037411 (-0.014208) | 0.096211 / 0.014526 (0.081685) | 0.105665 / 0.176557 (-0.070891) | 0.141074 / 0.737135 (-0.596061) | 0.108584 / 0.296338 (-0.187755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419041 / 0.215209 (0.203832) | 4.187915 / 2.077655 (2.110261) | 1.855336 / 1.504120 (0.351216) | 1.660046 / 1.541195 (0.118851) | 1.674646 / 1.468490 (0.206156) | 0.692257 / 4.584777 (-3.892520) | 3.466853 / 3.745712 (-0.278860) | 1.900925 / 5.269862 (-3.368936) | 1.294696 / 4.565676 (-3.270980) | 0.082792 / 0.424275 (-0.341483) | 0.012808 / 0.007607 (0.005201) | 0.529622 / 0.226044 (0.303578) | 5.337025 / 2.268929 (3.068096) | 2.326558 / 55.444624 (-53.118066) | 1.956256 / 6.876477 (-4.920221) | 2.035911 / 2.142072 (-0.106161) | 0.815824 / 4.805227 (-3.989403) | 0.148720 / 6.500664 (-6.351944) | 0.064226 / 0.075469 (-0.011243) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231347 / 1.841788 (-0.610440) | 13.724596 / 8.074308 (5.650288) | 13.933878 / 10.191392 (3.742486) | 0.150913 / 0.680424 (-0.529511) | 0.028460 / 0.534201 (-0.505741) | 0.393564 / 0.579283 (-0.185719) | 0.407185 / 0.434364 (-0.027179) | 0.458250 / 0.540337 (-0.082087) | 0.547993 / 1.386936 (-0.838943) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006653 / 0.011353 (-0.004699) | 0.004615 / 0.011008 (-0.006393) | 0.098062 / 0.038508 (0.059554) | 0.027849 / 0.023109 (0.004740) | 0.409116 / 0.275898 (0.133218) | 0.448770 / 0.323480 (0.125290) | 0.004856 / 0.007986 (-0.003130) | 0.003427 / 0.004328 (-0.000901) | 0.075748 / 0.004250 (0.071498) | 0.037942 / 0.037052 (0.000889) | 0.410232 / 0.258489 (0.151743) | 0.457394 / 0.293841 (0.163553) | 0.031927 / 0.128546 (-0.096620) | 0.011618 / 0.075646 (-0.064028) | 0.321231 / 0.419271 (-0.098040) | 0.041416 / 0.043533 (-0.002117) | 0.413535 / 0.255139 (0.158396) | 0.438196 / 0.283200 (0.154997) | 0.089551 / 0.141683 (-0.052132) | 1.459298 / 1.452155 (0.007143) | 1.552594 / 1.492716 (0.059878) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228186 / 0.018006 (0.210180) | 0.404393 / 0.000490 (0.403904) | 0.006944 / 0.000200 (0.006744) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025167 / 0.037411 (-0.012244) | 0.101282 / 0.014526 (0.086756) | 0.107282 / 0.176557 (-0.069275) | 0.139797 / 0.737135 (-0.597339) | 0.110477 / 0.296338 (-0.185861) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479121 / 0.215209 (0.263912) | 4.778210 / 2.077655 (2.700555) | 2.464687 / 1.504120 (0.960567) | 2.255312 / 1.541195 (0.714118) | 2.287348 / 1.468490 (0.818858) | 0.694769 / 4.584777 (-3.890008) | 3.460860 / 3.745712 (-0.284852) | 3.078881 / 5.269862 (-2.190980) | 1.297726 / 4.565676 (-3.267950) | 0.082699 / 0.424275 (-0.341576) | 0.012652 / 0.007607 (0.005045) | 0.583308 / 0.226044 (0.357263) | 5.839199 / 2.268929 (3.570271) | 2.893724 / 55.444624 (-52.550900) | 2.546503 / 6.876477 (-4.329974) | 2.559570 / 2.142072 (0.417498) | 0.802357 / 4.805227 (-4.002870) | 0.151890 / 6.500664 (-6.348774) | 0.068593 / 0.075469 (-0.006876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262421 / 1.841788 (-0.579367) | 13.771848 / 8.074308 (5.697540) | 14.046017 / 10.191392 (3.854625) | 0.140950 / 0.680424 (-0.539474) | 0.016839 / 0.534201 (-0.517362) | 0.378870 / 0.579283 (-0.200413) | 0.385908 / 0.434364 (-0.048456) | 0.438539 / 0.540337 (-0.101799) | 0.522761 / 1.386936 (-0.864175) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8145ebfd4fc3508d0be0de9a0f9c58877f2b32f8 \"CML watermark\")\n" ]
2023-01-18T06:53:15
2023-01-18T13:49:51
2023-01-18T13:42:49
This PR updates the "checkout" GitHub Action to its latest version, as previous ones are deprecated: https://github.blog/changelog/2022-09-22-github-actions-all-actions-will-begin-running-on-node16-instead-of-node12/
albertvillanova
https://github.com/huggingface/datasets/pull/5438
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5438", "html_url": "https://github.com/huggingface/datasets/pull/5438", "diff_url": "https://github.com/huggingface/datasets/pull/5438.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5438.patch", "merged_at": "2023-01-18T13:42:48" }
true
1,536,837,144
5,437
Can't load png dataset with 4 channel (RGBA)
closed
[ "Hi! Can you please share the directory structure of your image folder and the `load_dataset` call? We decode images with Pillow, and Pillow supports RGBA PNGs, so this shouldn't be a problem.\r\n\r\n", "> Hi! Can you please share the directory structure of your image folder and the `load_dataset` call? We decode images with Pillow, and Pillow supports RGBA PNGs, so this shouldn't be a problem.\n> \n> \n\nI have only 1 folder that I use in the load_dataset function with the name \"IMGDATA\" and all my 9000 images are located in this folder.\n`\nfrom datasets import load_dataset\n\ndataset = load_dataset(\"IMGDATA\")\n`\nAt the same time, using another data set with images consisting of 3 RGB channels, everything works", "Okay, I figured out what was wrong. When uploading my dataset via Google Drive, the images broke and Pillow couldn't open them. As a result, I solved the problem by downloading the ZIP archive" ]
2023-01-17T18:22:27
2023-01-18T20:20:15
2023-01-18T20:20:15
I try to create dataset which contains about 9000 png images 64x64 in size, and they are all 4-channel (RGBA). When trying to use load_dataset() then a dataset is created from only 2 images. What exactly interferes I can not understand.![Screenshot_20230117_212213.jpg](https://user-images.githubusercontent.com/41611046/212980147-9aa68e30-76e9-4b61-a937-c2fdabd56564.jpg)
WiNE-iNEFF
https://github.com/huggingface/datasets/issues/5437
null
false
1,536,633,173
5,436
Revert container image pin in CI benchmarks
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.013736 / 0.011353 (0.002383) | 0.006253 / 0.011008 (-0.004755) | 0.127076 / 0.038508 (0.088568) | 0.040997 / 0.023109 (0.017888) | 0.394744 / 0.275898 (0.118846) | 0.454285 / 0.323480 (0.130805) | 0.009864 / 0.007986 (0.001878) | 0.005093 / 0.004328 (0.000765) | 0.098714 / 0.004250 (0.094464) | 0.044308 / 0.037052 (0.007255) | 0.421951 / 0.258489 (0.163462) | 0.462280 / 0.293841 (0.168439) | 0.059979 / 0.128546 (-0.068567) | 0.020607 / 0.075646 (-0.055039) | 0.443593 / 0.419271 (0.024321) | 0.062332 / 0.043533 (0.018799) | 0.411335 / 0.255139 (0.156196) | 0.426524 / 0.283200 (0.143324) | 0.118233 / 0.141683 (-0.023450) | 1.877681 / 1.452155 (0.425527) | 1.865271 / 1.492716 (0.372555) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234791 / 0.018006 (0.216784) | 0.557322 / 0.000490 (0.556833) | 0.000528 / 0.000200 (0.000328) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030260 / 0.037411 (-0.007151) | 0.122594 / 0.014526 (0.108068) | 0.142142 / 0.176557 (-0.034414) | 0.197098 / 0.737135 (-0.540037) | 0.150978 / 0.296338 (-0.145360) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.622644 / 0.215209 (0.407435) | 6.320078 / 2.077655 (4.242423) | 2.552755 / 1.504120 (1.048635) | 2.188647 / 1.541195 (0.647453) | 2.226602 / 1.468490 (0.758112) | 1.288083 / 4.584777 (-3.296694) | 5.624143 / 3.745712 (1.878431) | 3.208382 / 5.269862 (-2.061480) | 2.115222 / 4.565676 (-2.450455) | 0.146420 / 0.424275 (-0.277856) | 0.014464 / 0.007607 (0.006857) | 0.816470 / 0.226044 (0.590425) | 7.984049 / 2.268929 (5.715120) | 3.364942 / 55.444624 (-52.079682) | 2.552306 / 6.876477 (-4.324171) | 2.664575 / 2.142072 (0.522503) | 1.556177 / 4.805227 (-3.249050) | 0.263389 / 6.500664 (-6.237275) | 0.076861 / 0.075469 (0.001391) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.553734 / 1.841788 (-0.288054) | 18.365029 / 8.074308 (10.290721) | 20.993993 / 10.191392 (10.802601) | 0.235642 / 0.680424 (-0.444782) | 0.047084 / 0.534201 (-0.487117) | 0.555610 / 0.579283 (-0.023673) | 0.659413 / 0.434364 (0.225049) | 0.639284 / 0.540337 (0.098947) | 0.756317 / 1.386936 (-0.630620) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.014709 / 0.011353 (0.003356) | 0.006673 / 0.011008 (-0.004335) | 0.133718 / 0.038508 (0.095210) | 0.035699 / 0.023109 (0.012590) | 0.459089 / 0.275898 (0.183191) | 0.538071 / 0.323480 (0.214591) | 0.007376 / 0.007986 (-0.000610) | 0.004688 / 0.004328 (0.000360) | 0.104909 / 0.004250 (0.100659) | 0.064942 / 0.037052 (0.027890) | 0.466158 / 0.258489 (0.207669) | 0.566100 / 0.293841 (0.272259) | 0.057368 / 0.128546 (-0.071178) | 0.021572 / 0.075646 (-0.054075) | 0.413826 / 0.419271 (-0.005446) | 0.079543 / 0.043533 (0.036010) | 0.493313 / 0.255139 (0.238174) | 0.517787 / 0.283200 (0.234587) | 0.119836 / 0.141683 (-0.021847) | 1.833956 / 1.452155 (0.381801) | 2.003288 / 1.492716 (0.510572) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.276013 / 0.018006 (0.258007) | 0.549194 / 0.000490 (0.548704) | 0.010939 / 0.000200 (0.010739) | 0.000129 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034983 / 0.037411 (-0.002428) | 0.131576 / 0.014526 (0.117050) | 0.140651 / 0.176557 (-0.035906) | 0.186455 / 0.737135 (-0.550681) | 0.146309 / 0.296338 (-0.150029) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.675973 / 0.215209 (0.460763) | 6.821862 / 2.077655 (4.744208) | 3.090307 / 1.504120 (1.586187) | 2.710679 / 1.541195 (1.169484) | 2.891577 / 1.468490 (1.423087) | 1.306160 / 4.584777 (-3.278617) | 5.629763 / 3.745712 (1.884051) | 4.662578 / 5.269862 (-0.607283) | 2.670195 / 4.565676 (-1.895482) | 0.153867 / 0.424275 (-0.270408) | 0.016028 / 0.007607 (0.008421) | 0.878702 / 0.226044 (0.652658) | 8.801612 / 2.268929 (6.532683) | 4.005520 / 55.444624 (-51.439104) | 3.124755 / 6.876477 (-3.751721) | 3.382132 / 2.142072 (1.240060) | 1.525951 / 4.805227 (-3.279277) | 0.263350 / 6.500664 (-6.237315) | 0.079285 / 0.075469 (0.003815) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.647591 / 1.841788 (-0.194197) | 18.281646 / 8.074308 (10.207338) | 21.072142 / 10.191392 (10.880750) | 0.232236 / 0.680424 (-0.448188) | 0.026126 / 0.534201 (-0.508075) | 0.546926 / 0.579283 (-0.032357) | 0.634496 / 0.434364 (0.200132) | 0.604345 / 0.540337 (0.064007) | 0.730159 / 1.386936 (-0.656777) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cfe8a6aa4cd2d3d0d7067f390152d1a4aeb4c710 \"CML watermark\")\n" ]
2023-01-17T15:59:50
2023-01-18T09:05:49
2023-01-18T06:29:06
Closes #5433, reverts #5432, and also: * Uses [ghcr.io container images](https://cml.dev/doc/self-hosted-runners/#docker-images) for extra speed * Updates `actions/checkout` to `v3` (note that `v2` is [deprecated](https://github.blog/changelog/2022-09-22-github-actions-all-actions-will-begin-running-on-node16-instead-of-node12/)) * Follows the new naming convention for environment variables introduced with [iterative/cml#1272](https://github.com/iterative/cml/pull/1272)
0x2b3bfa0
https://github.com/huggingface/datasets/pull/5436
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5436", "html_url": "https://github.com/huggingface/datasets/pull/5436", "diff_url": "https://github.com/huggingface/datasets/pull/5436.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5436.patch", "merged_at": "2023-01-18T06:29:06" }
true
1,536,099,300
5,435
Wrong statement in "Load a Dataset in Streaming mode" leads to data leakage
closed
[ "Just for your information, Tensorflow confirmed this issue [here.](https://github.com/tensorflow/tensorflow/issues/59279)", "Thanks for reporting, @HaoyuYang59.\r\n\r\nPlease note that these are different \"dataset\" objects: our docs refer to Hugging Face `datasets.Dataset` and not to TensorFlow `tf.data.Dataset`.\r\n\r\nOur `datasets.Dataset.shuffle` method does not have a `reshuffle_each_iteration` argument. Therefore, I would say the statement in our docs is True because they refer to `datasets.Dataset.shuffle`, `datasets.Dataset.skip` and `datasets.Dataset.take`.\r\n\r\nI think this issue is restricted to TensorFlow dataset, and this would be addressed by them in the issue you opened in their repo: https://github.com/tensorflow/tensorflow/issues/59279", "Also note that you are referring to an outdated documentation page: datasets 1.10.2 version\r\n\r\nCurrent datasets version is 2.8.0 and the corresponding documentation page is: https://huggingface.co/docs/datasets/stream#split-dataset", "Hi @albertvillanova thanks for your reply and your explaination here. \r\n\r\nSorry for the confusion as I'm not actually a user of your repo and I just happen to find the thread by Google (and didn't read carefully).\r\n\r\nGreat to know that and you made everything very clear now.\r\n\r\nThanks for your time and sorry for the consusion.\r\n\r\nWishing you a wonderful time. \r\n\r\nRegards" ]
2023-01-17T10:04:16
2023-01-19T09:56:03
2023-01-19T09:56:03
### Describe the bug In the [Split your dataset with take and skip](https://huggingface.co/docs/datasets/v1.10.2/dataset_streaming.html#split-your-dataset-with-take-and-skip), it states: > Using take (or skip) prevents future calls to shuffle from shuffling the dataset shards order, otherwise the taken examples could come from other shards. In this case it only uses the shuffle buffer. Therefore it is advised to shuffle the dataset before splitting using take or skip. See more details in the [Shuffling the dataset: shuffle](https://huggingface.co/docs/datasets/v1.10.2/dataset_streaming.html#iterable-dataset-shuffling) section.` >> \# You can also create splits from a shuffled dataset >> train_dataset = shuffled_dataset.skip(1000) >> eval_dataset = shuffled_dataset.take(1000) Where the shuffled dataset comes from: `shuffled_dataset = dataset.shuffle(buffer_size=10_000, seed=42)` At least in Tensorflow 2.9/2.10/2.11, [docs](https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle) states the `reshuffle_each_iteration` argument is `True` by default. This means the dataset would be shuffled after each epoch, and as a result **the validation data would leak into training test**. ### Steps to reproduce the bug N/A ### Expected behavior The `reshuffle_each_iteration` argument should be set to `False`. ### Environment info Tensorflow 2.9/2.10/2.11
DanielYang59
https://github.com/huggingface/datasets/issues/5435
null
false
1,536,090,042
5,434
sample_dataset module not found
closed
[ "Hi! Can you describe what the actual error is?", "working on the setfit example script\r\n\r\n from setfit import SetFitModel, SetFitTrainer, sample_dataset\r\n\r\nImportError: cannot import name 'sample_dataset' from 'setfit' (C:\\Python\\Python38\\lib\\site-packages\\setfit\\__init__.py)\r\n\r\n apart from that, I also had to hack these loads to import thses modules:\r\n from datasets.load import load_dataset \r\n from datasets.arrow_dataset import Dataset\r\n from datasets.dataset_dict import DatasetDict", "Hi! This issue is related to the [SetFit](https://github.com/huggingface/setfit) project, so can you please open it there?" ]
2023-01-17T09:57:54
2023-01-19T13:52:12
2023-01-19T07:55:11
null
nickums
https://github.com/huggingface/datasets/issues/5434
null
false
1,536,017,901
5,433
Support latest Docker image in CI benchmarks
closed
[ "Sorry, it was us:[^1] https://github.com/iterative/cml/pull/1317 & https://github.com/iterative/cml/issues/1319#issuecomment-1385599559; should be fixed with [v0.18.17](https://github.com/iterative/cml/releases/tag/v0.18.17).\r\n\r\n[^1]: More or less, see https://github.com/yargs/yargs/issues/873.", "Opened https://github.com/huggingface/datasets/pull/5436 unpinning again the container image.", "Hi @0x2b3bfa0, thanks a lot for the investigation, the context about the the root cause and for fixing it!!\r\n\r\nWe are reviewing your PR to unpin the container image." ]
2023-01-17T09:06:08
2023-01-18T06:29:08
2023-01-18T06:29:08
Once we find out the root cause of: - #5431 we should revert the temporary pin on the Docker image version introduced by: - #5432
albertvillanova
https://github.com/huggingface/datasets/issues/5433
null
false
1,535,893,019
5,432
Fix CI benchmarks by temporarily pinning Docker image version
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008519 / 0.011353 (-0.002834) | 0.004451 / 0.011008 (-0.006558) | 0.102401 / 0.038508 (0.063893) | 0.029779 / 0.023109 (0.006669) | 0.302654 / 0.275898 (0.026756) | 0.366002 / 0.323480 (0.042522) | 0.007044 / 0.007986 (-0.000942) | 0.003350 / 0.004328 (-0.000978) | 0.078213 / 0.004250 (0.073963) | 0.035208 / 0.037052 (-0.001844) | 0.312980 / 0.258489 (0.054491) | 0.344217 / 0.293841 (0.050376) | 0.033089 / 0.128546 (-0.095457) | 0.011443 / 0.075646 (-0.064203) | 0.353143 / 0.419271 (-0.066128) | 0.040851 / 0.043533 (-0.002682) | 0.304501 / 0.255139 (0.049362) | 0.329118 / 0.283200 (0.045918) | 0.087399 / 0.141683 (-0.054284) | 1.500200 / 1.452155 (0.048046) | 1.536176 / 1.492716 (0.043459) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209626 / 0.018006 (0.191619) | 0.425551 / 0.000490 (0.425061) | 0.001168 / 0.000200 (0.000968) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023664 / 0.037411 (-0.013748) | 0.096792 / 0.014526 (0.082266) | 0.105652 / 0.176557 (-0.070905) | 0.140796 / 0.737135 (-0.596340) | 0.109319 / 0.296338 (-0.187019) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414802 / 0.215209 (0.199593) | 4.152619 / 2.077655 (2.074964) | 1.814403 / 1.504120 (0.310283) | 1.611392 / 1.541195 (0.070198) | 1.667350 / 1.468490 (0.198860) | 0.691855 / 4.584777 (-3.892922) | 3.406584 / 3.745712 (-0.339128) | 1.940332 / 5.269862 (-3.329530) | 1.279061 / 4.565676 (-3.286615) | 0.082938 / 0.424275 (-0.341337) | 0.012388 / 0.007607 (0.004781) | 0.521738 / 0.226044 (0.295693) | 5.233764 / 2.268929 (2.964835) | 2.306573 / 55.444624 (-53.138051) | 1.954631 / 6.876477 (-4.921845) | 2.048315 / 2.142072 (-0.093757) | 0.816921 / 4.805227 (-3.988306) | 0.150983 / 6.500664 (-6.349681) | 0.066628 / 0.075469 (-0.008842) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235939 / 1.841788 (-0.605849) | 14.047114 / 8.074308 (5.972806) | 14.149842 / 10.191392 (3.958450) | 0.152836 / 0.680424 (-0.527588) | 0.028837 / 0.534201 (-0.505364) | 0.396232 / 0.579283 (-0.183051) | 0.409950 / 0.434364 (-0.024414) | 0.460296 / 0.540337 (-0.080041) | 0.556787 / 1.386936 (-0.830149) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006582 / 0.011353 (-0.004771) | 0.004491 / 0.011008 (-0.006518) | 0.100093 / 0.038508 (0.061585) | 0.026826 / 0.023109 (0.003717) | 0.413971 / 0.275898 (0.138073) | 0.445625 / 0.323480 (0.122145) | 0.004892 / 0.007986 (-0.003094) | 0.003295 / 0.004328 (-0.001034) | 0.077879 / 0.004250 (0.073628) | 0.039177 / 0.037052 (0.002125) | 0.353299 / 0.258489 (0.094810) | 0.406566 / 0.293841 (0.112725) | 0.031633 / 0.128546 (-0.096913) | 0.011517 / 0.075646 (-0.064130) | 0.320939 / 0.419271 (-0.098332) | 0.041487 / 0.043533 (-0.002046) | 0.353735 / 0.255139 (0.098596) | 0.434786 / 0.283200 (0.151586) | 0.087722 / 0.141683 (-0.053961) | 1.515134 / 1.452155 (0.062979) | 1.588908 / 1.492716 (0.096191) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225312 / 0.018006 (0.207305) | 0.398324 / 0.000490 (0.397834) | 0.000453 / 0.000200 (0.000253) | 0.000064 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024645 / 0.037411 (-0.012766) | 0.099399 / 0.014526 (0.084873) | 0.107006 / 0.176557 (-0.069550) | 0.145090 / 0.737135 (-0.592045) | 0.110046 / 0.296338 (-0.186292) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450573 / 0.215209 (0.235364) | 4.498030 / 2.077655 (2.420375) | 2.193164 / 1.504120 (0.689044) | 1.940103 / 1.541195 (0.398908) | 1.957137 / 1.468490 (0.488647) | 0.697599 / 4.584777 (-3.887178) | 3.465146 / 3.745712 (-0.280566) | 1.918209 / 5.269862 (-3.351653) | 1.183921 / 4.565676 (-3.381756) | 0.082540 / 0.424275 (-0.341735) | 0.012495 / 0.007607 (0.004888) | 0.549702 / 0.226044 (0.323658) | 5.526841 / 2.268929 (3.257912) | 2.658611 / 55.444624 (-52.786014) | 2.259542 / 6.876477 (-4.616935) | 2.310139 / 2.142072 (0.168066) | 0.810550 / 4.805227 (-3.994677) | 0.152369 / 6.500664 (-6.348295) | 0.066295 / 0.075469 (-0.009174) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289240 / 1.841788 (-0.552547) | 14.032143 / 8.074308 (5.957834) | 13.973492 / 10.191392 (3.782100) | 0.140082 / 0.680424 (-0.540342) | 0.017113 / 0.534201 (-0.517088) | 0.386534 / 0.579283 (-0.192749) | 0.393723 / 0.434364 (-0.040641) | 0.448891 / 0.540337 (-0.091446) | 0.533085 / 1.386936 (-0.853851) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2023-01-17T07:15:31
2023-01-17T08:58:22
2023-01-17T08:51:17
This PR fixes CI benchmarks, by temporarily pinning Docker image version, instead of "latest" tag. It also updates deprecated `cml-send-comment` command and using `cml comment create` instead. Fix #5431.
albertvillanova
https://github.com/huggingface/datasets/pull/5432
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5432", "html_url": "https://github.com/huggingface/datasets/pull/5432", "diff_url": "https://github.com/huggingface/datasets/pull/5432.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5432.patch", "merged_at": "2023-01-17T08:51:17" }
true
1,535,862,621
5,431
CI benchmarks are broken: Unknown arguments: runnerPath, path
closed
[]
2023-01-17T06:49:57
2023-01-18T06:33:24
2023-01-17T08:51:18
Our CI benchmarks are broken, raising `Unknown arguments` error: https://github.com/huggingface/datasets/actions/runs/3932397079/jobs/6724905161 ``` Unknown arguments: runnerPath, path ``` Stack trace: ``` 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 500/500 [00:01<00:00, 338.98ba/s] Updating lock file 'dvc.lock' To track the changes with git, run: git add dvc.lock To enable auto staging, run: dvc config core.autostage true Use `dvc push` to send your updates to remote storage. cml send-comment <markdown file> Global Options: --log Logging verbosity [string] [choices: "error", "warn", "info", "debug"] [default: "info"] --driver Git provider where the repository is hosted [string] [choices: "github", "gitlab", "bitbucket"] [default: infer from the environment] --repo Repository URL or slug [string] [default: infer from the environment] --driver-token, --token CI driver personal/project access token (PAT) [string] [default: infer from the environment] --help Show help [boolean] Options: --target Comment type (`commit`, `pr`, `commit/f00bar`, `pr/42`, `issue/1337`),default is automatic (`pr` but fallback to `commit`). [string] --watch Watch for changes and automatically update the comment [boolean] --publish Upload any local images found in the Markdown report [boolean] [default: true] --publish-url Self-hosted image server URL [string] [default: "https://asset.cml.dev/"] --publish-native, --native Uses driver's native capabilities to upload assets instead of CML's storage; not available on GitHub [boolean] --watermark-title Hidden comment marker (used for targeting in subsequent `cml comment update`); "{workflow}" & "{run}" are auto-replaced [string] [default: ""] Unknown arguments: runnerPath, path Error: Process completed with exit code 1. ``` Issue reported to iterative/cml: - iterative/cml#1319
albertvillanova
https://github.com/huggingface/datasets/issues/5431
null
false
1,535,856,503
5,430
Support Apache Beam >= 2.44.0
closed
[ "Some of the shard files now have 0 number of rows.\r\n\r\nWe have opened an issue in the Apache Beam repo:\r\n- https://github.com/apache/beam/issues/25041" ]
2023-01-17T06:42:12
2024-02-06T19:24:21
2024-02-06T19:24:21
Once we find out the root cause of: - #5426 we should revert the temporary pin on apache-beam introduced by: - #5429
albertvillanova
https://github.com/huggingface/datasets/issues/5430
null
false
1,535,192,687
5,429
Fix CI by temporarily pinning apache-beam < 2.44.0
closed
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2023-01-16T16:20:09
2023-01-16T16:51:42
2023-01-16T16:49:03
Temporarily pin apache-beam < 2.44.0 Fix #5426.
albertvillanova
https://github.com/huggingface/datasets/pull/5429
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5429", "html_url": "https://github.com/huggingface/datasets/pull/5429", "diff_url": "https://github.com/huggingface/datasets/pull/5429.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5429.patch", "merged_at": "2023-01-16T16:49:03" }
true
1,535,166,139
5,428
Load/Save FAISS index using fsspec
closed
[ "Hi! Sure, feel free to submit a PR. Maybe if we want to be consistent with the existing API, it would be cleaner to directly add support for `fsspec` paths in `Dataset.load_faiss_index`/`Dataset.save_faiss_index` in the same manner as it was done in `Dataset.load_from_disk`/`Dataset.save_to_disk`.", "That's a great idea! I'll do that instead. " ]
2023-01-16T16:08:12
2023-03-27T15:18:22
2023-03-27T15:18:22
### Feature request From what I understand `faiss` already support this [link](https://github.com/facebookresearch/faiss/wiki/Index-IO,-cloning-and-hyper-parameter-tuning#generic-io-support) I would like to use a stream as input to `Dataset.load_faiss_index` and `Dataset.save_faiss_index`. ### Motivation In my case, I'm saving faiss index in cloud storage and use `fsspec` to load them. It would be ideal if I could send the stream directly instead of copying the file locally (or mounting the bucket) and then load the index. ### Your contribution I can submit the PR
Dref360
https://github.com/huggingface/datasets/issues/5428
null
false
1,535,162,889
5,427
Unable to download dataset id_clickbait
closed
[ "Thanks for reporting, @ilos-vigil.\r\n\r\nWe have transferred this issue to the corresponding dataset on the Hugging Face Hub: https://huggingface.co/datasets/id_clickbait/discussions/1 " ]
2023-01-16T16:05:36
2023-01-18T09:51:28
2023-01-18T09:25:19
### Describe the bug I tried to download dataset `id_clickbait`, but receive this error message. ``` FileNotFoundError: Couldn't find file at https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/k42j7x2kpn-1.zip ``` When i open the link using browser, i got this XML data. ```xml <?xml version="1.0" encoding="UTF-8"?> <Error><Code>NoSuchBucket</Code><Message>The specified bucket does not exist</Message><BucketName>md-datasets-cache-zipfiles-prod</BucketName><RequestId>NVRM6VEEQD69SD00</RequestId><HostId>W/SPDxLGvlCGi0OD6d7mSDvfOAUqLAfvs9nTX50BkJrjMny+X9Jnqp/Li2lG9eTUuT4MUkAA2jjTfCrCiUmu7A==</HostId></Error> ``` ### Steps to reproduce the bug Code snippet: ``` from datasets import load_dataset load_dataset('id_clickbait', 'annotated') load_dataset('id_clickbait', 'raw') ``` Link to Kaggle notebook: https://www.kaggle.com/code/ilosvigil/bug-check-on-id-clickbait-dataset ### Expected behavior Successfully download and load `id_newspaper` dataset. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid - Python version: 3.7.12 - PyArrow version: 8.0.0 - Pandas version: 1.3.5
ilos-vigil
https://github.com/huggingface/datasets/issues/5427
null
false
1,535,158,555
5,426
CI tests are broken: SchemaInferenceError
closed
[]
2023-01-16T16:02:07
2023-06-02T06:40:32
2023-01-16T16:49:04
CI test (unit, ubuntu-latest, deps-minimum) is broken, raising a `SchemaInferenceError`: see https://github.com/huggingface/datasets/actions/runs/3930901593/jobs/6721492004 ``` FAILED tests/test_beam.py::BeamBuilderTest::test_download_and_prepare_sharded - datasets.arrow_writer.SchemaInferenceError: Please pass `features` or at least one example when writing data ``` Stack trace: ``` ______________ BeamBuilderTest.test_download_and_prepare_sharded _______________ [gw1] linux -- Python 3.7.15 /opt/hostedtoolcache/Python/3.7.15/x64/bin/python self = <tests.test_beam.BeamBuilderTest testMethod=test_download_and_prepare_sharded> @require_beam def test_download_and_prepare_sharded(self): import apache_beam as beam original_write_parquet = beam.io.parquetio.WriteToParquet expected_num_examples = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: builder = DummyBeamDataset(cache_dir=tmp_cache_dir, beam_runner="DirectRunner") with patch("apache_beam.io.parquetio.WriteToParquet") as write_parquet_mock: write_parquet_mock.side_effect = partial(original_write_parquet, num_shards=2) > builder.download_and_prepare() tests/test_beam.py:97: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/builder.py:864: in download_and_prepare **download_and_prepare_kwargs, /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/builder.py:1976: in _download_and_prepare num_examples, num_bytes = beam_writer.finalize(metrics.query(m_filter)) /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/arrow_writer.py:694: in finalize shard_num_bytes, _ = parquet_to_arrow(source, destination) /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/arrow_writer.py:740: in parquet_to_arrow num_bytes, num_examples = writer.finalize() _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <datasets.arrow_writer.ArrowWriter object at 0x7f6dcbb3e810> close_stream = True def finalize(self, close_stream=True): self.write_rows_on_file() # In case current_examples < writer_batch_size, but user uses finalize() if self._check_duplicates: self.check_duplicate_keys() # Re-intializing to empty list for next batch self.hkey_record = [] self.write_examples_on_file() # If schema is known, infer features even if no examples were written if self.pa_writer is None and self.schema: self._build_writer(self.schema) if self.pa_writer is not None: self.pa_writer.close() self.pa_writer = None if close_stream: self.stream.close() else: if close_stream: self.stream.close() > raise SchemaInferenceError("Please pass `features` or at least one example when writing data") E datasets.arrow_writer.SchemaInferenceError: Please pass `features` or at least one example when writing data /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/arrow_writer.py:593: SchemaInferenceError ```
albertvillanova
https://github.com/huggingface/datasets/issues/5426
null
false
1,534,581,850
5,425
Sort on multiple keys with datasets.Dataset.sort()
closed
[ "Hi! \r\n\r\n`Dataset.sort` calls `df.sort_values` internally, and `df.sort_values` brings all the \"sort\" columns in memory, so sorting on multiple keys could be very expensive. This makes me think that maybe we can replace `df.sort_values` with `pyarrow.compute.sort_indices` - the latter can also sort on multiple keys and currently loads the data into memory; however, there is a plan to eventually implement \"memory-map\" friendly kernels for the Arrow compute ops (using the Acero execution engine). \r\n\r\nSo to address this issue, you should replace `df.sort_values` with `pyarrow.compute.sort_indices` in `Dataset.sort` and adjust the signature of this function (deprecate the `kind` parameter, etc.).\r\n\r\nPS: Feel free to ping us if you need some additional help/pointers", "@mariosasko If I understand the code right, using `pyarrow.compute.sort_indices` would also require changes to the `select` method if it is meant to sort multiple keys. That's because `select` only accepts 1D input for `indices`, not an iterable or similar which would be required for multiple keys unless you want some looping over selects. Doesn't seem that straight-forward but I might be missing something here... ", "@MichlF No, it doesn't require modifying select because sorting on multiple keys also returns a 1D array.\r\n\r\nIt's easier to understand with an example:\r\n```python\r\n>>> import pyarrow as pa\r\n>>> import pyarrow.compute as pc\r\n>>> table = pa.table({\r\n... \"name\": [\"John\", \"Eve\", \"Peter\", \"John\"],\r\n... \"surname\": [\"Johnson\", \"Smith\", \"Smith\", \"Doe\"],\r\n... \"age\": [20, 40, 30, 50],\r\n... })\r\n>>> indices = pc.sort_indices(table, sort_keys=[(\"name\", \"ascending\"), (\"surname\", \"ascending\")])\r\n>>> print(indices)\r\n[\r\n 1,\r\n 3,\r\n 0,\r\n 2\r\n]\r\n```\r\n\r\n", "Thanks for clarifying.\r\nI can prepare a PR to address this issue. This would be my first PR here so I have a few maybe silly questions but:\r\n- What is the preferred input type of `sort_keys` for the sort method? A sequence with name, order tuples like pyarrow's `sort_indices` requires?\r\n- What about backwards compatability: is it supposed to also accept the old way of calling sort() or should both `column` and `kind` be deprecated?\r\n- If `sort_keys` is provided in the same format as for pyarrow's `sort_indices` - i.e. along with order for each column -, `reverse` doesn't make much sense either and should be deprecated as well I assume.", "I think we can have the following signature:\r\n```python\r\ndef sort(\r\n self,\r\n column_names: Union[str, Sequence[str]],\r\n reverse: Union[bool, Sequence[bool]] = False,\r\n kind=\"deprecated\",\r\n null_placement: str = \"last\",\r\n keep_in_memory: bool = False,\r\n load_from_cache_file: bool = True,\r\n indices_cache_file_name: Optional[str] = None,\r\n writer_batch_size: Optional[int] = 1000,\r\n new_fingerprint: Optional[str] = None,\r\n ) -> \"Dataset\":\r\n``` \r\n\r\nSo we should:\r\n* rename`column` to `column_names`. `column` is a positional argument, so it's OK to rename it (not marked as positional-only with \"/\", but still should be fine)\r\n* deprecate `kind`\r\n* keep `reverse` instead of introducing `sort_keys`, but we should allow passing a list of booleans that defines the sort order of each column from `column_names` to it (`reverse = False` would be equal to `[False] * len(column_names)` and `reverse = True` to `[True] * len(column_names)`)", "I am pretty much done with the PR. Just one clarification: `Sequence` in `arrow_dataset.py` is a custom dataclass from `features.py` instead of the `type.hinting` class `Sequence` from Python. Do you suggest using that custom `Sequence` class somehow ? Otherwise signature currently reads instead:\r\n```Python\r\n def sort(\r\n self,\r\n column_names: Union[str, List[str]],\r\n reverse: Union[bool, List[bool]] = False,\r\n kind = \"deprecated\",\r\n null_placement: str = \"last\",\r\n keep_in_memory: bool = False,\r\n load_from_cache_file: bool = True,\r\n indices_cache_file_name: Optional[str] = None,\r\n writer_batch_size: Optional[int] = 1000,\r\n new_fingerprint: Optional[str] = None,\r\n )\r\n```\r\n\r\nAlso, to maintain backwards compatibility, I added conditionals for `null_placement`, because pyarrow's `null_placement` only accepts `at_start` and `at_end`, and not `last` and `first`.\r\nIf that is all good, I think I can open the PR.", "I meant `typing.Sequence` (`datasets.Sequence` is a feature type). \r\n\r\nRegarding `null_placement`, I think we can support both `at_start` and `at_end`, and `last` and `first` (for backward compatibility; convert internally to `at_end` and `at_start` respectively).", "> I meant typing.Sequence (datasets.Sequence is a feature type).\r\n\r\nSorry, I actually meant `typing.Sequence` and not `type.hinting`. However, the issue is still that `dataset.Sequence` is imported in `arrow_dataset.py` so I cannot import and use `typing.Sequence` for the `sort`'s signature without overwriting the `dataset.Sequence` import. The latter is used in the `align_labels_with_mapping` method so it's a necessary import for `arrow_dataset.py`. \r\nTo import `typing.Sequence` as something else than `Sequence` to avoid overwriting may only be confusing and doesn't seem good practice!? The other solution is to keep `List` type hinting as in the signature I posted in my previous post but this excludes other Sequence types and may cause problems further down the line.\r\nPlease advise,\r\nThanks for all the clarifications!", "You can avoid the name collision by renaming `typing.Sequence` to `Sequence_` when importing:\r\n```python\r\nfrom typing import Sequence as Sequence_\r\n```", "Resolved via #5502 " ]
2023-01-16T09:22:26
2023-02-24T16:15:11
2023-02-24T16:15:11
### Feature request From discussion on forum: https://discuss.huggingface.co/t/datasets-dataset-sort-does-not-preserve-ordering/29065/1 `sort()` does not preserve ordering, and it does not support sorting on multiple columns, nor a key function. The suggested solution: > ... having something similar to pandas and be able to specify multiple columns for sorting. Weโ€™re already using pandas under the hood to do the sorting in datasets. The suggested workaround: > convert your dataset to pandas and use `df.sort_values()` ### Motivation Preserved ordering when sorting is very handy when one needs to sort on multiple columns, A and B, so that e.g. whenever A is equal for two or more rows, B is kept sorted. Having a parameter to do this in ๐Ÿค—datasets would be cleaner than going through pandas and back, and it wouldn't add much complexity to the library. Alternatives: - the possibility to specify multiple keys to sort by with decreasing priority (suggested solution), - the ability to provide a key function for sorting, so that one can manually specify the sorting criteria. ### Your contribution I'll be happy to contribute by submitting a PR. Will get documented on `CONTRIBUTING.MD`. Would love to get thoughts on this, if anyone has anything to add.
rocco-fortuna
https://github.com/huggingface/datasets/issues/5425
null
false
1,534,394,756
5,424
When applying `ReadInstruction` to custom load it's not DatasetDict but list of Dataset?
closed
[ "Hi! You can get a `DatasetDict` if you pass a dictionary with read instructions as follows:\r\n```python\r\ninstructions = [\r\n ReadInstruction(split_name=\"train\", from_=0, to=10, unit='%', rounding='closest'),\r\n ReadInstruction(split_name=\"dev\", from_=0, to=10, unit='%', rounding='closest'),\r\n ReadInstruction(split_name=\"test\", from_=0, to=5, unit='%', rounding='closest')\r\n]\r\n\r\ndataset = load_dataset('csv', data_dir=\"data/\", data_files={\"train\":\"train.tsv\", \"dev\":\"dev.tsv\", \"test\":\"test.tsv\"}, delimiter=\"\\t\", split={inst.split_name: inst for inst in instructions})\r\n```\r\n" ]
2023-01-16T06:54:28
2023-02-24T16:19:00
2023-02-24T16:19:00
### Describe the bug I am loading datasets from custom `tsv` files stored locally and applying split instructions for each split. Although the ReadInstruction is being applied correctly and I was expecting it to be `DatasetDict` but instead it is a list of `Dataset`. ### Steps to reproduce the bug Steps to reproduce the behaviour: 1. Import `from datasets import load_dataset, ReadInstruction` 2. Instruction to load the dataset ``` instructions = [ ReadInstruction(split_name="train", from_=0, to=10, unit='%', rounding='closest'), ReadInstruction(split_name="dev", from_=0, to=10, unit='%', rounding='closest'), ReadInstruction(split_name="test", from_=0, to=5, unit='%', rounding='closest') ] ``` 3. Load `dataset = load_dataset('csv', data_dir="data/", data_files={"train":"train.tsv", "dev":"dev.tsv", "test":"test.tsv"}, delimiter="\t", split=instructions)` ### Expected behavior **Current behaviour** ![Screenshot from 2023-01-16 10-45-27](https://user-images.githubusercontent.com/25720695/212614754-306898d8-8c27-4475-9bb8-0321bd939561.png) : **Expected behaviour** ![Screenshot from 2023-01-16 10-45-42](https://user-images.githubusercontent.com/25720695/212614813-0d336bf7-5266-482e-bb96-ef51f64de204.png) ### Environment info ``datasets==2.8.0 `` `Python==3.8.5 ` `Platform - Ubuntu 20.04.4 LTS`
macabdul9
https://github.com/huggingface/datasets/issues/5424
null
false
1,533,385,239
5,422
Datasets load error for saved github issues
open
[ "I can confirm that the error exists!\r\nI'm trying to read 3 parquet files locally:\r\n```python\r\nfrom datasets import load_dataset, Features, Value, ClassLabel\r\n\r\nreview_dataset = load_dataset(\r\n \"parquet\",\r\n data_files={\r\n \"train\": os.path.join(sentiment_analysis_data_path, \"train.parquet\"),\r\n \"validation\": os.path.join(sentiment_analysis_data_path, \"validation.parquet\"),\r\n \"test\": os.path.join(sentiment_analysis_data_path, \"test.parquet\"),\r\n },\r\n)\r\n```\r\n\r\nBut you can fix it, by specifying `features` for `load_dataset()` function like this:\r\n```python\r\nfrom datasets import load_dataset, Features, Value, ClassLabel\r\n\r\nfeatures = Features(\r\n {\r\n \"label\": ClassLabel(\r\n num_classes=3,\r\n names=[\"negative\", \"neutral\", \"positive\"],\r\n ),\r\n \"text\": Value(dtype=\"string\"),\r\n }\r\n)\r\n\r\nreview_dataset = load_dataset(\r\n \"parquet\",\r\n data_files={\r\n \"train\": os.path.join(sentiment_analysis_data_path, \"train.parquet\"),\r\n \"validation\": os.path.join(sentiment_analysis_data_path, \"validation.parquet\"),\r\n \"test\": os.path.join(sentiment_analysis_data_path, \"test.parquet\"),\r\n },\r\n features=features,\r\n)\r\n\r\nprint(review_dataset)\r\n```", "@Extremesarova I think this is a different issue, but understand using features could be a work-around.\r\nIt seems the field `closed_at` is `null` in many cases.\r\n\r\nI've not found a way to specify only a single feature without (succesfully) specifiying the full and quite detailed set of expected features. Using this features set gives an error the column names don't match.\r\n`features = Features({'closed_at': Value(dtype='timestamp[s]', id=None)})`\r\n\r\n", "Found this when searching for the same error, looks like based on #3965 it's just an issue with the data. I found that changing `df = pd.DataFrame.from_records(all_issues)` to `df = pd.DataFrame.from_records(all_issues).dropna(axis=1, how='all').drop(['milestone'], axis=1)` from the fetch_issues function fixed the issue. \r\nThe \"milestone\" column seemed to be problematic (only ~50 non null rows) and dropped any columns that were all null as well just in case.", "I have this same issue. I saved a dataset to disk and now I can't load it.", "Ok the solution was to use load_from_disk instead of load_dataset.", "Hi @folterj , I faced same issue while creating `issues_dataset` (https://huggingface.co/learn/nlp-course/chapter5/5?fw=pt). The fix which worked for me was loading the *.jsonl file as pd.read_json and then converting it into a Dataset using datasets API.\r\n```\r\nimport pandas as pd\r\ndf=pd.read_json(\"datasets-issues.jsonl\", lines=True)\r\ndf.head()\r\n\r\nfrom datasets import Dataset\r\nissues_dataset = Dataset.from_pandas(df)\r\nissues_dataset\r\nsample = issues_dataset.shuffle(seed=666).select(range(3))\r\nsample[0]\r\n```", "I understand some work-around suggestions would be to not use load_dataset(), and instead using a different API function. Another alternative would be using the same function using streaming, as I had already suggested in my original post.\r\nHowever, the fact remains that there is an issue in this function as reported." ]
2023-01-14T17:29:38
2023-09-14T11:39:57
null
### Describe the bug Loading a previously downloaded & saved dataset as described in the HuggingFace course: issues_dataset = load_dataset("json", data_files="issues/datasets-issues.jsonl", split="train") Gives this error: datasets.builder.DatasetGenerationError: An error occurred while generating the dataset A work-around I found was to use streaming. ### Steps to reproduce the bug Reproduce by executing the code provided: https://huggingface.co/course/chapter5/5?fw=pt From the heading: 'letโ€™s create a function that can download all the issues from a GitHub repository' ### Expected behavior No error ### Environment info Datasets version 2.8.0. Note that version 2.6.1 gives the same error (related to null timestamp). **[EDIT]** This is the complete error trace confirming the issue is related to the timestamp (`Couldn't cast array of type timestamp[s] to null`) ``` Using custom data configuration default-950028611d2860c8 Downloading and preparing dataset json/default to [...]/.cache/huggingface/datasets/json/default-950028611d2860c8/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51... Downloading data files: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 1/1 [00:00<?, ?it/s] Extracting data files: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 1/1 [00:00<00:00, 500.63it/s] Generating train split: 2619 examples [00:00, 7155.72 examples/s]Traceback (most recent call last): File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 1831, in _prepare_split_single writer.write_table(table) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\arrow_writer.py", line 567, in write_table pa_table = table_cast(pa_table, self._schema) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2282, in table_cast return cast_table_to_schema(table, schema) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2241, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2241, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1807, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1807, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2035, in cast_array_to_feature arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()] File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2035, in <listcomp> arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()] File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1809, in wrapper return func(array, *args, **kwargs) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2101, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1809, in wrapper return func(array, *args, **kwargs) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1990, in array_cast raise TypeError(f"Couldn't cast array of type {array.type} to {pa_type}") TypeError: Couldn't cast array of type timestamp[s] to null The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Program Files\JetBrains\PyCharm 2022.1.3\plugins\python\helpers\pydev\pydevconsole.py", line 364, in runcode coro = func() File "<input>", line 1, in <module> File "C:\Program Files\JetBrains\PyCharm 2022.1.3\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 198, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "C:\Program Files\JetBrains\PyCharm 2022.1.3\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "[...]\PycharmProjects\TransformersTesting\dataset_issues.py", line 20, in <module> issues_dataset = load_dataset("json", data_files="issues/datasets-issues.jsonl", split="train") File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\load.py", line 1757, in load_dataset builder_instance.download_and_prepare( File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 860, in download_and_prepare self._download_and_prepare( File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 953, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 1706, in _prepare_split for job_id, done, content in self._prepare_split_single( File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 1849, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset Generating train split: 2619 examples [00:19, 7155.72 examples/s] ```
folterj
https://github.com/huggingface/datasets/issues/5422
null
false
1,532,278,307
5,421
Support case-insensitive Hub dataset name in load_dataset
closed
[ "Closing as case-insensitivity should be only for URL redirection on the Hub. In the APIs, we will only support the canonical name (https://github.com/huggingface/moon-landing/pull/2399#issuecomment-1382085611)" ]
2023-01-13T13:07:07
2023-01-13T20:12:32
2023-01-13T20:12:32
### Feature request The dataset name on the Hub is case-insensitive (see https://github.com/huggingface/moon-landing/pull/2399, internal issue), i.e., https://huggingface.co/datasets/GLUE redirects to https://huggingface.co/datasets/glue. Ideally, we could load the glue dataset using the following: ``` from datasets import load_dataset load_dataset('GLUE', 'cola') ``` It breaks because the loading script `GLUE.py` does not exist (`glue.py` should be selected instead). Minor additional comment: in other cases without a loading script, we can load the dataset, but the automatically generated config name depends on the casing: - `load_dataset('severo/danish-wit')` generates the config name `severo--danish-wit-e6fda5b070deb133`, while - `load_dataset('severo/danish-WIT')` generates the config name `severo--danish-WIT-e6fda5b070deb133` ### Motivation To follow the same UX on the Hub and in the datasets library. ### Your contribution ...
severo
https://github.com/huggingface/datasets/issues/5421
null
false
1,532,265,742
5,420
ci: ๐ŸŽก remove two obsolete issue templates
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008450 / 0.011353 (-0.002902) | 0.004478 / 0.011008 (-0.006530) | 0.100440 / 0.038508 (0.061931) | 0.029568 / 0.023109 (0.006459) | 0.296705 / 0.275898 (0.020807) | 0.354565 / 0.323480 (0.031085) | 0.006887 / 0.007986 (-0.001098) | 0.003415 / 0.004328 (-0.000914) | 0.078876 / 0.004250 (0.074626) | 0.034927 / 0.037052 (-0.002125) | 0.307695 / 0.258489 (0.049206) | 0.340917 / 0.293841 (0.047076) | 0.033630 / 0.128546 (-0.094916) | 0.011626 / 0.075646 (-0.064020) | 0.322644 / 0.419271 (-0.096627) | 0.040254 / 0.043533 (-0.003279) | 0.297419 / 0.255139 (0.042280) | 0.321584 / 0.283200 (0.038384) | 0.086202 / 0.141683 (-0.055481) | 1.465579 / 1.452155 (0.013425) | 1.521456 / 1.492716 (0.028740) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200890 / 0.018006 (0.182884) | 0.410300 / 0.000490 (0.409811) | 0.001647 / 0.000200 (0.001447) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022569 / 0.037411 (-0.014843) | 0.096062 / 0.014526 (0.081536) | 0.102474 / 0.176557 (-0.074082) | 0.138596 / 0.737135 (-0.598539) | 0.106262 / 0.296338 (-0.190077) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415976 / 0.215209 (0.200766) | 4.144322 / 2.077655 (2.066667) | 1.871783 / 1.504120 (0.367663) | 1.669478 / 1.541195 (0.128283) | 1.718214 / 1.468490 (0.249724) | 0.687870 / 4.584777 (-3.896907) | 3.362084 / 3.745712 (-0.383628) | 1.844127 / 5.269862 (-3.425735) | 1.149611 / 4.565676 (-3.416066) | 0.081410 / 0.424275 (-0.342865) | 0.012278 / 0.007607 (0.004671) | 0.518245 / 0.226044 (0.292200) | 5.185164 / 2.268929 (2.916236) | 2.299029 / 55.444624 (-53.145595) | 1.960021 / 6.876477 (-4.916456) | 2.009751 / 2.142072 (-0.132322) | 0.803759 / 4.805227 (-4.001468) | 0.147340 / 6.500664 (-6.353324) | 0.063896 / 0.075469 (-0.011573) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254142 / 1.841788 (-0.587646) | 13.799683 / 8.074308 (5.725375) | 13.940387 / 10.191392 (3.748995) | 0.151246 / 0.680424 (-0.529178) | 0.028709 / 0.534201 (-0.505491) | 0.391600 / 0.579283 (-0.187683) | 0.405750 / 0.434364 (-0.028614) | 0.455479 / 0.540337 (-0.084858) | 0.541022 / 1.386936 (-0.845914) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006462 / 0.011353 (-0.004891) | 0.004462 / 0.011008 (-0.006547) | 0.096588 / 0.038508 (0.058080) | 0.026931 / 0.023109 (0.003822) | 0.344595 / 0.275898 (0.068697) | 0.378743 / 0.323480 (0.055264) | 0.005672 / 0.007986 (-0.002314) | 0.003345 / 0.004328 (-0.000984) | 0.074363 / 0.004250 (0.070112) | 0.037300 / 0.037052 (0.000248) | 0.346895 / 0.258489 (0.088406) | 0.388585 / 0.293841 (0.094744) | 0.031459 / 0.128546 (-0.097088) | 0.011522 / 0.075646 (-0.064124) | 0.318507 / 0.419271 (-0.100764) | 0.041145 / 0.043533 (-0.002388) | 0.343866 / 0.255139 (0.088727) | 0.366490 / 0.283200 (0.083291) | 0.086793 / 0.141683 (-0.054890) | 1.483859 / 1.452155 (0.031704) | 1.574006 / 1.492716 (0.081290) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220436 / 0.018006 (0.202430) | 0.402988 / 0.000490 (0.402498) | 0.000435 / 0.000200 (0.000235) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024573 / 0.037411 (-0.012838) | 0.099190 / 0.014526 (0.084664) | 0.106796 / 0.176557 (-0.069761) | 0.142387 / 0.737135 (-0.594748) | 0.109991 / 0.296338 (-0.186347) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473452 / 0.215209 (0.258243) | 4.749554 / 2.077655 (2.671899) | 2.433482 / 1.504120 (0.929362) | 2.224276 / 1.541195 (0.683082) | 2.261579 / 1.468490 (0.793088) | 0.699876 / 4.584777 (-3.884901) | 3.378366 / 3.745712 (-0.367346) | 1.835062 / 5.269862 (-3.434799) | 1.161249 / 4.565676 (-3.404427) | 0.082967 / 0.424275 (-0.341308) | 0.012745 / 0.007607 (0.005138) | 0.580006 / 0.226044 (0.353962) | 5.789868 / 2.268929 (3.520939) | 2.909496 / 55.444624 (-52.535128) | 2.539196 / 6.876477 (-4.337280) | 2.617737 / 2.142072 (0.475665) | 0.810320 / 4.805227 (-3.994907) | 0.152501 / 6.500664 (-6.348163) | 0.067201 / 0.075469 (-0.008268) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257844 / 1.841788 (-0.583943) | 13.865295 / 8.074308 (5.790987) | 14.169073 / 10.191392 (3.977680) | 0.135655 / 0.680424 (-0.544769) | 0.016597 / 0.534201 (-0.517604) | 0.374915 / 0.579283 (-0.204368) | 0.382771 / 0.434364 (-0.051593) | 0.431934 / 0.540337 (-0.108403) | 0.524617 / 1.386936 (-0.862319) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008748 / 0.011353 (-0.002605) | 0.004489 / 0.011008 (-0.006519) | 0.100923 / 0.038508 (0.062415) | 0.031436 / 0.023109 (0.008326) | 0.306508 / 0.275898 (0.030610) | 0.365110 / 0.323480 (0.041630) | 0.007161 / 0.007986 (-0.000824) | 0.005489 / 0.004328 (0.001160) | 0.078909 / 0.004250 (0.074658) | 0.036097 / 0.037052 (-0.000955) | 0.307907 / 0.258489 (0.049418) | 0.370277 / 0.293841 (0.076436) | 0.034184 / 0.128546 (-0.094362) | 0.011613 / 0.075646 (-0.064033) | 0.322896 / 0.419271 (-0.096375) | 0.041829 / 0.043533 (-0.001704) | 0.299669 / 0.255139 (0.044530) | 0.322217 / 0.283200 (0.039017) | 0.087751 / 0.141683 (-0.053932) | 1.476277 / 1.452155 (0.024122) | 1.548196 / 1.492716 (0.055480) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183002 / 0.018006 (0.164995) | 0.415627 / 0.000490 (0.415138) | 0.003272 / 0.000200 (0.003072) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024881 / 0.037411 (-0.012531) | 0.103424 / 0.014526 (0.088898) | 0.106446 / 0.176557 (-0.070110) | 0.142806 / 0.737135 (-0.594330) | 0.110938 / 0.296338 (-0.185401) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421669 / 0.215209 (0.206460) | 4.207457 / 2.077655 (2.129802) | 1.882176 / 1.504120 (0.378056) | 1.677609 / 1.541195 (0.136415) | 1.734065 / 1.468490 (0.265575) | 0.695915 / 4.584777 (-3.888862) | 3.416731 / 3.745712 (-0.328981) | 1.872575 / 5.269862 (-3.397286) | 1.163612 / 4.565676 (-3.402064) | 0.082710 / 0.424275 (-0.341565) | 0.012659 / 0.007607 (0.005052) | 0.528785 / 0.226044 (0.302741) | 5.305328 / 2.268929 (3.036399) | 2.299850 / 55.444624 (-53.144774) | 1.968137 / 6.876477 (-4.908339) | 2.028326 / 2.142072 (-0.113746) | 0.813157 / 4.805227 (-3.992070) | 0.149997 / 6.500664 (-6.350668) | 0.066739 / 0.075469 (-0.008730) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206332 / 1.841788 (-0.635456) | 13.795510 / 8.074308 (5.721202) | 14.367695 / 10.191392 (4.176303) | 0.138106 / 0.680424 (-0.542318) | 0.028760 / 0.534201 (-0.505441) | 0.394822 / 0.579283 (-0.184461) | 0.403291 / 0.434364 (-0.031073) | 0.463273 / 0.540337 (-0.077065) | 0.540881 / 1.386936 (-0.846055) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006830 / 0.011353 (-0.004523) | 0.004606 / 0.011008 (-0.006402) | 0.097763 / 0.038508 (0.059255) | 0.027832 / 0.023109 (0.004723) | 0.422970 / 0.275898 (0.147072) | 0.460313 / 0.323480 (0.136833) | 0.005110 / 0.007986 (-0.002876) | 0.003428 / 0.004328 (-0.000901) | 0.075047 / 0.004250 (0.070797) | 0.038374 / 0.037052 (0.001322) | 0.422762 / 0.258489 (0.164273) | 0.469886 / 0.293841 (0.176045) | 0.032391 / 0.128546 (-0.096155) | 0.011804 / 0.075646 (-0.063843) | 0.320439 / 0.419271 (-0.098832) | 0.041939 / 0.043533 (-0.001594) | 0.422521 / 0.255139 (0.167382) | 0.446420 / 0.283200 (0.163220) | 0.090715 / 0.141683 (-0.050968) | 1.484578 / 1.452155 (0.032423) | 1.556154 / 1.492716 (0.063438) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260735 / 0.018006 (0.242728) | 0.415586 / 0.000490 (0.415096) | 0.026960 / 0.000200 (0.026760) | 0.000296 / 0.000054 (0.000241) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024926 / 0.037411 (-0.012486) | 0.099651 / 0.014526 (0.085125) | 0.107810 / 0.176557 (-0.068747) | 0.148685 / 0.737135 (-0.588451) | 0.112725 / 0.296338 (-0.183614) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472669 / 0.215209 (0.257460) | 4.718827 / 2.077655 (2.641172) | 2.475583 / 1.504120 (0.971463) | 2.260862 / 1.541195 (0.719667) | 2.307820 / 1.468490 (0.839330) | 0.699464 / 4.584777 (-3.885313) | 3.376282 / 3.745712 (-0.369431) | 1.872650 / 5.269862 (-3.397211) | 1.176399 / 4.565676 (-3.389277) | 0.082854 / 0.424275 (-0.341421) | 0.012845 / 0.007607 (0.005237) | 0.582088 / 0.226044 (0.356044) | 5.861609 / 2.268929 (3.592681) | 2.930728 / 55.444624 (-52.513896) | 2.624310 / 6.876477 (-4.252167) | 2.762130 / 2.142072 (0.620058) | 0.811902 / 4.805227 (-3.993325) | 0.152516 / 6.500664 (-6.348149) | 0.067670 / 0.075469 (-0.007799) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289790 / 1.841788 (-0.551997) | 14.267607 / 8.074308 (6.193299) | 14.120655 / 10.191392 (3.929263) | 0.128442 / 0.680424 (-0.551982) | 0.017079 / 0.534201 (-0.517121) | 0.381807 / 0.579283 (-0.197476) | 0.400546 / 0.434364 (-0.033818) | 0.447629 / 0.540337 (-0.092709) | 0.532006 / 1.386936 (-0.854930) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2023-01-13T12:58:43
2023-01-13T13:36:00
2023-01-13T13:29:01
add-dataset is not needed anymore since the "canonical" datasets are on the Hub. And dataset-viewer is managed within the datasets-server project. See https://github.com/huggingface/datasets/issues/new/choose <img width="1245" alt="Capture dโ€™eฬcran 2023-01-13 aฬ€ 13 59 58" src="https://user-images.githubusercontent.com/1676121/212325813-2d4c30e2-343e-4aa2-8cce-b2b77f45628e.png">
severo
https://github.com/huggingface/datasets/pull/5420
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5420", "html_url": "https://github.com/huggingface/datasets/pull/5420", "diff_url": "https://github.com/huggingface/datasets/pull/5420.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5420.patch", "merged_at": "2023-01-13T13:29:01" }
true
1,531,999,850
5,419
label_column='labels' in datasets.TextClassification and 'label' or 'label_ids' in transformers.DataColator
closed
[ "Hi! Thanks for pointing out this inconsistency. Changing the default value at this point is probably not worth it, considering we've started discussing the state of the task API internally - we will most likely deprecate the current one and replace it with a more robust solution that relies on the `train_eval_index` field stored in the YAML section of the dataset cards.", "The task templates API has been deprecated (will be removed in version 3.0), so I'm closing this issue." ]
2023-01-13T09:40:07
2023-07-21T14:27:08
2023-07-21T14:27:08
### Describe the bug When preparing a dataset for a task using `datasets.TextClassification`, the output feature is named `labels`. When preparing the trainer using the `transformers.DataCollator` the default column name is `label` if binary or `label_ids` if multi-class problem. It is required to rename the column accordingly to the expected name : `label` or `label_ids` ### Steps to reproduce the bug ```python from datasets import TextClassification, AutoTokenized, DataCollatorWithPadding ds_prepared = my_dataset.prepare_for_task(TextClassification(text_column='TEXT', label_column='MY_LABEL_COLUMN_1_OR_0')) print(ds_prepared) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ds_tokenized = ds_prepared.map(lambda x: tokenizer(x['text'], truncation=True), batched=True) print(ds_tokenized) data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") tf_data = model.prepare_tf_dataset(ds_tokenized, shuffle=True, batch_size=16, collate_fn=data_collator) print(tf_data) ``` ### Expected behavior Without renaming the the column, the target column is not in the final tf_data since it is not in the column name expected by the data_collator. To correct this, we have to rename the column: ```python ds_prepared = my_dataset.prepare_for_task(TextClassification(text_column='TEXT', label_column='MY_LABEL_COLUMN_1_OR_0')).rename_column('labels', 'label') ``` ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.6 - PyArrow version: 10.0.1 - Pandas version: 1.5.2 - `transformers` version: 4.26.0.dev0 - Platform: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.6 - Huggingface_hub version: 0.11.1 - PyTorch version (GPU?): not installed (NA) - Tensorflow version (GPU?): 2.11.0 (True) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in>
CreatixEA
https://github.com/huggingface/datasets/issues/5419
null
false
1,530,111,184
5,418
Add ProgressBar for `to_parquet`
closed
[ "Thanks for your proposal, @zanussbaum. Yes, I agree that would definitely be a nice feature to have!", "@albertvillanova Iโ€™m happy to make a quick PR for the feature! let me know ", "That would be awesome ! You can comment `#self-assign` to assign you to this issue and open a PR :) Will be happy to review", "Closing as this has been merged @lhoestq " ]
2023-01-12T05:06:20
2023-01-24T18:18:24
2023-01-24T18:18:24
### Feature request Add a progress bar for `Dataset.to_parquet`, similar to how `to_json` works. ### Motivation It's a bit frustrating to not know how long a dataset will take to write to file and if it's stuck or not without a progress bar ### Your contribution Sure I can help if needed
zanussbaum
https://github.com/huggingface/datasets/issues/5418
null
false
1,526,988,113
5,416
Fix RuntimeError: Sharding is ambiguous for this dataset
closed
[ "_The documentation is not available anymore as the PR was closed or merged._", "By the way, do we know how many datasets are impacted by this issue?\r\n\r\nMaybe we should do a patch release with this fix.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009256 / 0.011353 (-0.002097) | 0.005033 / 0.011008 (-0.005975) | 0.099346 / 0.038508 (0.060838) | 0.035204 / 0.023109 (0.012095) | 0.303017 / 0.275898 (0.027119) | 0.335632 / 0.323480 (0.012152) | 0.007953 / 0.007986 (-0.000033) | 0.005806 / 0.004328 (0.001477) | 0.076121 / 0.004250 (0.071871) | 0.041164 / 0.037052 (0.004112) | 0.305536 / 0.258489 (0.047047) | 0.348452 / 0.293841 (0.054611) | 0.037704 / 0.128546 (-0.090842) | 0.011982 / 0.075646 (-0.063664) | 0.333264 / 0.419271 (-0.086008) | 0.047738 / 0.043533 (0.004205) | 0.310126 / 0.255139 (0.054987) | 0.318719 / 0.283200 (0.035519) | 0.098933 / 0.141683 (-0.042750) | 1.421058 / 1.452155 (-0.031096) | 1.554771 / 1.492716 (0.062054) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.258627 / 0.018006 (0.240620) | 0.450814 / 0.000490 (0.450324) | 0.011288 / 0.000200 (0.011088) | 0.000136 / 0.000054 (0.000081) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027004 / 0.037411 (-0.010407) | 0.109067 / 0.014526 (0.094541) | 0.120401 / 0.176557 (-0.056155) | 0.158336 / 0.737135 (-0.578799) | 0.126244 / 0.296338 (-0.170094) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401847 / 0.215209 (0.186638) | 4.006003 / 2.077655 (1.928348) | 1.806342 / 1.504120 (0.302223) | 1.619751 / 1.541195 (0.078556) | 1.709660 / 1.468490 (0.241170) | 0.692444 / 4.584777 (-3.892333) | 3.853691 / 3.745712 (0.107979) | 2.143910 / 5.269862 (-3.125951) | 1.471600 / 4.565676 (-3.094076) | 0.084589 / 0.424275 (-0.339686) | 0.012276 / 0.007607 (0.004669) | 0.506529 / 0.226044 (0.280485) | 5.028361 / 2.268929 (2.759432) | 2.277660 / 55.444624 (-53.166964) | 1.930365 / 6.876477 (-4.946112) | 1.965494 / 2.142072 (-0.176579) | 0.826752 / 4.805227 (-3.978475) | 0.165050 / 6.500664 (-6.335614) | 0.062702 / 0.075469 (-0.012767) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234539 / 1.841788 (-0.607249) | 15.067401 / 8.074308 (6.993093) | 14.041920 / 10.191392 (3.850528) | 0.162590 / 0.680424 (-0.517834) | 0.028941 / 0.534201 (-0.505260) | 0.438518 / 0.579283 (-0.140765) | 0.443787 / 0.434364 (0.009423) | 0.516671 / 0.540337 (-0.023666) | 0.609036 / 1.386936 (-0.777900) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007535 / 0.011353 (-0.003818) | 0.005283 / 0.011008 (-0.005725) | 0.097116 / 0.038508 (0.058608) | 0.033357 / 0.023109 (0.010247) | 0.383398 / 0.275898 (0.107500) | 0.425516 / 0.323480 (0.102037) | 0.006039 / 0.007986 (-0.001947) | 0.004074 / 0.004328 (-0.000255) | 0.073207 / 0.004250 (0.068956) | 0.052153 / 0.037052 (0.015101) | 0.386385 / 0.258489 (0.127896) | 0.429900 / 0.293841 (0.136059) | 0.038341 / 0.128546 (-0.090205) | 0.012417 / 0.075646 (-0.063230) | 0.333859 / 0.419271 (-0.085413) | 0.051157 / 0.043533 (0.007625) | 0.395022 / 0.255139 (0.139883) | 0.402462 / 0.283200 (0.119262) | 0.105207 / 0.141683 (-0.036475) | 1.510679 / 1.452155 (0.058524) | 1.584205 / 1.492716 (0.091489) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225805 / 0.018006 (0.207799) | 0.452109 / 0.000490 (0.451619) | 0.000429 / 0.000200 (0.000229) | 0.000057 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029653 / 0.037411 (-0.007759) | 0.112609 / 0.014526 (0.098083) | 0.121828 / 0.176557 (-0.054728) | 0.159003 / 0.737135 (-0.578133) | 0.129306 / 0.296338 (-0.167033) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453001 / 0.215209 (0.237792) | 4.514882 / 2.077655 (2.437228) | 2.277494 / 1.504120 (0.773374) | 2.073870 / 1.541195 (0.532675) | 2.153346 / 1.468490 (0.684856) | 0.698363 / 4.584777 (-3.886414) | 3.921763 / 3.745712 (0.176051) | 2.123133 / 5.269862 (-3.146729) | 1.347618 / 4.565676 (-3.218058) | 0.085654 / 0.424275 (-0.338621) | 0.012059 / 0.007607 (0.004452) | 0.568183 / 0.226044 (0.342139) | 5.720047 / 2.268929 (3.451119) | 2.777973 / 55.444624 (-52.666651) | 2.453426 / 6.876477 (-4.423051) | 2.523977 / 2.142072 (0.381905) | 0.841979 / 4.805227 (-3.963248) | 0.167958 / 6.500664 (-6.332706) | 0.064929 / 0.075469 (-0.010540) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235297 / 1.841788 (-0.606491) | 15.883598 / 8.074308 (7.809290) | 14.395328 / 10.191392 (4.203936) | 0.162401 / 0.680424 (-0.518022) | 0.017806 / 0.534201 (-0.516394) | 0.423853 / 0.579283 (-0.155430) | 0.423266 / 0.434364 (-0.011098) | 0.490351 / 0.540337 (-0.049986) | 0.588116 / 1.386936 (-0.798820) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bb3fbfa162bb4700e23d084826b4b7f6d97284be \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010759 / 0.011353 (-0.000594) | 0.005748 / 0.011008 (-0.005260) | 0.119195 / 0.038508 (0.080687) | 0.033476 / 0.023109 (0.010367) | 0.364081 / 0.275898 (0.088183) | 0.422456 / 0.323480 (0.098976) | 0.009780 / 0.007986 (0.001795) | 0.006170 / 0.004328 (0.001841) | 0.093242 / 0.004250 (0.088991) | 0.041049 / 0.037052 (0.003997) | 0.372132 / 0.258489 (0.113643) | 0.442501 / 0.293841 (0.148660) | 0.054889 / 0.128546 (-0.073657) | 0.018302 / 0.075646 (-0.057345) | 0.378899 / 0.419271 (-0.040373) | 0.058455 / 0.043533 (0.014922) | 0.356141 / 0.255139 (0.101002) | 0.400866 / 0.283200 (0.117666) | 0.103384 / 0.141683 (-0.038299) | 1.629867 / 1.452155 (0.177713) | 1.693939 / 1.492716 (0.201222) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240484 / 0.018006 (0.222478) | 0.509137 / 0.000490 (0.508648) | 0.000450 / 0.000200 (0.000250) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025856 / 0.037411 (-0.011555) | 0.113214 / 0.014526 (0.098689) | 0.119420 / 0.176557 (-0.057136) | 0.158663 / 0.737135 (-0.578473) | 0.123542 / 0.296338 (-0.172797) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.555900 / 0.215209 (0.340691) | 5.580295 / 2.077655 (3.502640) | 2.216640 / 1.504120 (0.712520) | 1.904944 / 1.541195 (0.363749) | 1.865839 / 1.468490 (0.397349) | 1.158325 / 4.584777 (-3.426452) | 5.097420 / 3.745712 (1.351708) | 2.881775 / 5.269862 (-2.388087) | 2.068896 / 4.565676 (-2.496780) | 0.129028 / 0.424275 (-0.295247) | 0.014075 / 0.007607 (0.006468) | 0.698874 / 0.226044 (0.472830) | 7.131225 / 2.268929 (4.862296) | 2.901686 / 55.444624 (-52.542939) | 2.186146 / 6.876477 (-4.690330) | 2.251172 / 2.142072 (0.109100) | 1.342264 / 4.805227 (-3.462963) | 0.232045 / 6.500664 (-6.268619) | 0.073520 / 0.075469 (-0.001949) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.431314 / 1.841788 (-0.410474) | 16.313055 / 8.074308 (8.238747) | 18.451552 / 10.191392 (8.260160) | 0.232875 / 0.680424 (-0.447549) | 0.042170 / 0.534201 (-0.492031) | 0.495261 / 0.579283 (-0.084022) | 0.582901 / 0.434364 (0.148537) | 0.582049 / 0.540337 (0.041712) | 0.681122 / 1.386936 (-0.705814) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008131 / 0.011353 (-0.003222) | 0.006162 / 0.011008 (-0.004847) | 0.113721 / 0.038508 (0.075213) | 0.030797 / 0.023109 (0.007688) | 0.413108 / 0.275898 (0.137210) | 0.449968 / 0.323480 (0.126488) | 0.006126 / 0.007986 (-0.001860) | 0.004848 / 0.004328 (0.000519) | 0.085465 / 0.004250 (0.081214) | 0.045817 / 0.037052 (0.008764) | 0.419360 / 0.258489 (0.160871) | 0.489077 / 0.293841 (0.195236) | 0.050841 / 0.128546 (-0.077705) | 0.020646 / 0.075646 (-0.055000) | 0.379838 / 0.419271 (-0.039434) | 0.068897 / 0.043533 (0.025365) | 0.422182 / 0.255139 (0.167043) | 0.435529 / 0.283200 (0.152330) | 0.115299 / 0.141683 (-0.026384) | 1.655134 / 1.452155 (0.202979) | 1.835198 / 1.492716 (0.342481) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207041 / 0.018006 (0.189034) | 0.491263 / 0.000490 (0.490773) | 0.003554 / 0.000200 (0.003354) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030830 / 0.037411 (-0.006582) | 0.127003 / 0.014526 (0.112477) | 0.142901 / 0.176557 (-0.033656) | 0.177570 / 0.737135 (-0.559565) | 0.137758 / 0.296338 (-0.158580) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.632820 / 0.215209 (0.417611) | 6.215535 / 2.077655 (4.137880) | 2.615310 / 1.504120 (1.111190) | 2.261431 / 1.541195 (0.720236) | 2.220570 / 1.468490 (0.752080) | 1.215820 / 4.584777 (-3.368957) | 5.247680 / 3.745712 (1.501968) | 3.120054 / 5.269862 (-2.149807) | 1.950947 / 4.565676 (-2.614730) | 0.149980 / 0.424275 (-0.274295) | 0.015241 / 0.007607 (0.007634) | 0.879714 / 0.226044 (0.653670) | 7.941913 / 2.268929 (5.672984) | 3.512456 / 55.444624 (-51.932168) | 2.693833 / 6.876477 (-4.182644) | 2.772780 / 2.142072 (0.630708) | 1.459581 / 4.805227 (-3.345646) | 0.264820 / 6.500664 (-6.235844) | 0.076698 / 0.075469 (0.001228) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.437719 / 1.841788 (-0.404068) | 16.750309 / 8.074308 (8.676001) | 18.646776 / 10.191392 (8.455384) | 0.227858 / 0.680424 (-0.452566) | 0.024239 / 0.534201 (-0.509962) | 0.486172 / 0.579283 (-0.093111) | 0.574731 / 0.434364 (0.140367) | 0.557776 / 0.540337 (0.017439) | 0.672921 / 1.386936 (-0.714015) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bb3fbfa162bb4700e23d084826b4b7f6d97284be \"CML watermark\")\n" ]
2023-01-10T08:43:19
2023-01-18T17:12:17
2023-01-18T14:09:02
This PR fixes the RuntimeError: Sharding is ambiguous for this dataset. The error for ambiguous sharding will be raised only if num_proc > 1. Fix #5415, fix #5414. Fix https://huggingface.co/datasets/ami/discussions/3.
albertvillanova
https://github.com/huggingface/datasets/pull/5416
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5416", "html_url": "https://github.com/huggingface/datasets/pull/5416", "diff_url": "https://github.com/huggingface/datasets/pull/5416.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5416.patch", "merged_at": "2023-01-18T14:09:02" }
true
1,526,904,861
5,415
RuntimeError: Sharding is ambiguous for this dataset
closed
[]
2023-01-10T07:36:11
2023-01-18T14:09:04
2023-01-18T14:09:03
### Describe the bug When loading some datasets, a RuntimeError is raised. For example, for "ami" dataset: https://huggingface.co/datasets/ami/discussions/3 ``` .../huggingface/datasets/src/datasets/builder.py in _prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size) 1415 fpath = path_join(self._output_dir, fname) 1416 -> 1417 num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs) 1418 if num_input_shards <= 1 and num_proc is not None: 1419 logger.warning( .../huggingface/datasets/src/datasets/utils/sharding.py in _number_of_shards_in_gen_kwargs(gen_kwargs) 10 lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} 11 if len(set(lists_lengths.values())) > 1: ---> 12 raise RuntimeError( 13 ( 14 "Sharding is ambiguous for this dataset: " RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key samples_paths has length 6 - key ids has length 7 - key verification_ids has length 6 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length. ``` This behavior was introduced when implementing multiprocessing by PR: - #5107 ### Steps to reproduce the bug ```python ds = load_dataset("ami", "microphone-single", split="train", revision="2d7620bb7c3f1aab9f329615c3bdb598069d907a") ``` ### Expected behavior No error raised. ### Environment info Since datasets 2.7.0
albertvillanova
https://github.com/huggingface/datasets/issues/5415
null
false
1,525,733,818
5,414
Sharding error with Multilingual LibriSpeech
closed
[ "Thanks for reporting, @Nithin-Holla.\r\n\r\nThis is a known issue for multiple datasets and we are investigating it:\r\n- See e.g.: https://huggingface.co/datasets/ami/discussions/3", "Main issue:\r\n- #5415", "@albertvillanova Thanks! As a workaround for now, can I use the dataset in streaming mode?", "Yes, @Nithin-Holla, in the meantime you can use this dataset in streaming mode." ]
2023-01-09T14:45:31
2023-01-18T14:09:04
2023-01-18T14:09:04
### Describe the bug Loading the German Multilingual LibriSpeech dataset results in a RuntimeError regarding sharding with the following stacktrace: ``` Downloading and preparing dataset multilingual_librispeech/german to /home/nithin/datadrive/cache/huggingface/datasets/facebook___multilingual_librispeech/german/2.1.0/1904af50f57a5c370c9364cc337699cfe496d4e9edcae6648a96be23086362d0... Downloading data files: 100% 3/3 [00:00<00:00, 107.23it/s] Downloading data files: 100% 1/1 [00:00<00:00, 35.08it/s] Downloading data files: 100% 6/6 [00:00<00:00, 303.36it/s] Downloading data files: 100% 3/3 [00:00<00:00, 130.37it/s] Downloading data files: 100% 1049/1049 [00:00<00:00, 4491.40it/s] Downloading data files: 100% 37/37 [00:00<00:00, 1096.78it/s] Downloading data files: 100% 40/40 [00:00<00:00, 1003.93it/s] Extracting data files: 100% 3/3 [00:11<00:00, 2.62s/it] Generating train split: 469942/0 [34:13<00:00, 273.21 examples/s] Output exceeds the size limit. Open the full output data in a text editor --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-14-74fa6d092bdc> in <module> ----> 1 mls = load_dataset(MLS_DATASET, 2 LANGUAGE, 3 cache_dir="~/datadrive/cache/huggingface/datasets", 4 ignore_verifications=True) /anaconda/envs/py38_default/lib/python3.8/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs) 1755 1756 # Download and prepare data -> 1757 builder_instance.download_and_prepare( 1758 download_config=download_config, 1759 download_mode=download_mode, /anaconda/envs/py38_default/lib/python3.8/site-packages/datasets/builder.py in download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 858 if num_proc is not None: 859 prepare_split_kwargs["num_proc"] = num_proc --> 860 self._download_and_prepare( 861 dl_manager=dl_manager, 862 verify_infos=verify_infos, /anaconda/envs/py38_default/lib/python3.8/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs) 1609 1610 def _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs): ... RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key audio_archives has length 1049 - key local_extracted_archive has length 1049 - key limited_ids_paths has length 1 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length. ``` ### Steps to reproduce the bug Here is the code to reproduce it: ```python from datasets import load_dataset MLS_DATASET = "facebook/multilingual_librispeech" LANGUAGE = "german" mls = load_dataset(MLS_DATASET, LANGUAGE, cache_dir="~/datadrive/cache/huggingface/datasets", ignore_verifications=True) ``` ### Expected behavior The expected behaviour is that the dataset is successfully loaded. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.4.0-1094-azure-x86_64-with-glibc2.10 - Python version: 3.8.8 - PyArrow version: 10.0.1 - Pandas version: 1.2.4
Nithin-Holla
https://github.com/huggingface/datasets/issues/5414
null
false
1,524,591,837
5,413
concatenate_datasets fails when two dataset with shards > 1 and unequal shard numbers
closed
[ "Hi ! Thanks for reporting :)\r\n\r\nI managed to reproduce the hub using\r\n```python\r\n\r\nfrom datasets import concatenate_datasets, Dataset, load_from_disk\r\n\r\nDataset.from_dict({\"a\": range(9)}).save_to_disk(\"tmp/ds1\")\r\nds1 = load_from_disk(\"tmp/ds1\")\r\nds1 = concatenate_datasets([ds1, ds1])\r\n\r\nDataset.from_dict({\"b\": range(6)}).save_to_disk(\"tmp/ds2\")\r\nds2 = load_from_disk(\"tmp/ds2\")\r\nds2 = concatenate_datasets([ds2, ds2, ds2])\r\n\r\nconcatenate_datasets([ds1, ds2], axis=1)\r\n```\r\nand I get\r\n```python\r\nTraceback (most recent call last): \r\n File \"test.py\", line 98, in <module>\r\n dds = concatenate_datasets([ds1, ds2], axis=1)\r\n File \"/Users/.../datasets/combine.py\", line 182, in concatenate_datasets\r\n return _concatenate_map_style_datasets(dsets, info=info, split=split, axis=axis)\r\n File \"/Users/.../datasets/arrow_dataset.py\", line 5499, in _concatenate_map_style_datasets\r\n table = concat_tables([dset._data for dset in dsets], axis=axis)\r\n File \"/Users/.../datasets/table.py\", line 1778, in concat_tables\r\n return ConcatenationTable.from_tables(tables, axis=axis)\r\n File \"/Users/.../datasets/table.py\", line 1483, in from_tables\r\n blocks = _extend_blocks(blocks, table_blocks, axis=axis)\r\n File \"/Users/.../datasets/table.py\", line 1477, in _extend_blocks\r\n result[i].extend(row_blocks)\r\nIndexError: list index out of range\r\n```\r\n\r\nIt appears to happen when the two datasets have a number of shards that is not the same" ]
2023-01-08T17:01:52
2023-01-26T09:27:21
2023-01-26T09:27:21
### Describe the bug When using `concatenate_datasets([dataset1, dataset2], axis = 1)` to concatenate two datasets with shards > 1, it fails: ``` File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/combine.py", line 182, in concatenate_datasets return _concatenate_map_style_datasets(dsets, info=info, split=split, axis=axis) File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 5499, in _concatenate_map_style_datasets table = concat_tables([dset._data for dset in dsets], axis=axis) File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/table.py", line 1778, in concat_tables return ConcatenationTable.from_tables(tables, axis=axis) File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/table.py", line 1483, in from_tables blocks = _extend_blocks(blocks, table_blocks, axis=axis) File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/table.py", line 1477, in _extend_blocks result[i].extend(row_blocks) IndexError: list index out of range ``` ### Steps to reproduce the bug dataset = concatenate_datasets([dataset1, dataset2], axis = 1) ### Expected behavior The datasets are correctly concatenated. ### Environment info datasets==2.8.0
ZeguanXiao
https://github.com/huggingface/datasets/issues/5413
null
false