Diffusers documentation
AutoModel
AutoModel
The AutoModel class automatically detects and loads the correct model class (UNet, transformer, VAE) from a config.json file. You donβt need to know the specific model class name ahead of time. It supports data types and device placement, and works across model types and libraries.
The example below loads a transformer from Diffusers and a text encoder from Transformers. Use the subfolder parameter to specify where to load the config.json file from.
import torch
from diffusers import AutoModel, DiffusionPipeline
transformer = AutoModel.from_pretrained(
"Qwen/Qwen-Image", subfolder="transformer", torch_dtype=torch.bfloat16, device_map="cuda"
)
text_encoder = AutoModel.from_pretrained(
"Qwen/Qwen-Image", subfolder="text_encoder", torch_dtype=torch.bfloat16, device_map="cuda"
)Custom models
AutoModel also loads models from the Hub that arenβt included in Diffusers. Set trust_remote_code=True in AutoModel.from_pretrained() to load custom models.
A custom model repository needs a Python module with the model class, and a config.json with an auto_map entry that maps "AutoModel" to "module_file.ClassName".
custom/custom-transformer-model/
βββ config.json
βββ my_model.py
βββ diffusion_pytorch_model.safetensorsThe config.json includes the auto_map field pointing to the custom class.
{
"auto_map": {
"AutoModel": "my_model.MyCustomModel"
}
}Then load it with trust_remote_code=True.
import torch
from diffusers import AutoModel
transformer = AutoModel.from_pretrained(
"custom/custom-transformer-model", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda"
)For a real-world example, Overworld/Waypoint-1-Small hosts a custom WorldModel class across several modules in its transformer subfolder.
transformer/
βββ config.json # auto_map: "model.WorldModel"
βββ model.py
βββ attn.py
βββ nn.py
βββ cache.py
βββ quantize.py
βββ __init__.py
βββ diffusion_pytorch_model.safetensorsimport torch
from diffusers import AutoModel
transformer = AutoModel.from_pretrained(
"Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda"
)If the custom model inherits from the ModelMixin class, it gets access to the same features as Diffusers model classes, like regional compilation and group offloading.
As a precaution with
trust_remote_code=True, pass a commit hash to therevisionargument in AutoModel.from_pretrained() to make sure the code hasnβt been updated with new malicious code (unless you fully trust the model owners).transformer = AutoModel.from_pretrained( "Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, revision="a3d8cb2" )
Update on GitHubLearn more about implementing custom models in the Community components guide.