After training ๐๐ฆ๐จ๐ฅ๐๐๐ on ๐๐๐ ๐๐๐๐๐ฌ for nearly a month, I've come to realize something most people overlook: ๐ข๐ง๐๐ซ๐๐ฌ๐ญ๐ซ๐ฎ๐๐ญ๐ฎ๐ซ๐ ๐ข๐ฌ ๐ญ๐ก๐ ๐ฆ๐๐ค๐-๐จ๐ซ-๐๐ซ๐๐๐ค ๐๐๐๐ญ๐จ๐ซ ๐ข๐ง ๐๐๐ ๐ญ๐ซ๐๐ข๐ง๐ข๐ง๐ . ๐ฅ
Everyone talks about model architecture and data quality. And yes, those matter immensely. But here's what nobody tells you: when your training run fails at 2 AM because of mysterious ๐๐๐๐ ๐๐ซ๐ซ๐จ๐ซ๐ฌ, or when your expensive GPU cluster is running at ๐๐% ๐๐๐๐ข๐๐ข๐๐ง๐๐ฒ, the problem isn't your model. It's most probably a ๐ฆ๐ข๐ฌ๐ฎ๐ฌ๐ ๐จ๐ ๐ญ๐ก๐ ๐ก๐๐ซ๐๐ฐ๐๐ซ๐. ๐ ๏ธ
Questions that seemed simple but had no clear answers: Why is ๐๐จ๐ ๐ญ๐ซ๐๐ข๐ง๐ข๐ง๐ ๐ฌ๐ฅ๐จ๐ฐ๐๐ซ ๐ญ๐ก๐๐ง ๐๐๐ง๐ฌ๐ ๐ฆ๐จ๐๐๐ฅ๐ฌ? Which ๐๐๐๐ ๐๐ฅ๐๐ ๐ฌ should we actually set? How often should we checkpoint without killing throughput?
That's why we built ๐๐ก๐ ๐๐ฆ๐จ๐ฅ ๐๐ซ๐๐ข๐ง๐ข๐ง๐ ๐๐ฅ๐๐ฒ๐๐จ๐จ๐ค ๐: a complete guide covering everything from model architecture and data curation to the SmolLM3 training marathon, post-training techniques, and crucially, the ๐ข๐ง๐๐ซ๐๐ฌ๐ญ๐ซ๐ฎ๐๐ญ๐ฎ๐ซ๐ ๐ฅ๐๐ฒ๐๐ซ that most teams get wrong.
We validated real vs theoretical bandwidth across the entire stack: ๐๐๐๐ ๐ก๐ข๐ญ๐ญ๐ข๐ง๐ ๐ ๐๐/๐ฌ, ๐๐๐๐ข๐ง๐ค ๐.๐ ๐ซ๐๐๐๐ก๐ข๐ง๐ ๐๐๐ ๐๐/๐ฌ, ๐๐๐๐ ๐๐๐ง๐ ๐๐ญ ๐๐.๐ ๐๐/๐ฌ. Then we ran collective operations across ๐๐๐ ๐๐๐๐ฌ (16 nodes, 8xH100s each) and measured how performance degrades at scale: all-reduce drops from ๐๐๐ ๐๐/๐ฌ on a single node to ๐๐๐-๐๐๐ ๐๐/๐ฌ across 16 nodes.
If you've ever wondered why your training runs are slower than they should be, or you're planning to scale up and want to avoid expensive mistakes, this guide might save you weeks of debugging.
YAML engineering becomes more and more important than ever from infra provisioning to model training (recipes).
Here, I built a simple editor first for @dstackai, and I will share the live endpoint this week. Let me know what you think about this approach.
Based on this approach, if people think this is useful, I am going to do the same thing for the LLM training recipes for popular frameworks such as Hugging Face open-r1, Axolotl, and so on. Let me hear.
Inspired by Hugging Face's official MCP server, I've developed a complementary tool that exposes my semantic search API to enhance discovery across the HF platform.
Key capabilities:
- AI-powered semantic search for models and datasets - Parameter count analysis via safetensors metadata - Trending content discovery - Find similar models/datasets functionality - 11 tools total for enhanced ecosystem navigation
The semantic search goes beyond simple keyword matching, understanding context and relationships between different models and datasets.
Example query: "Find around 10 reasoning Hugging Face datasets published in 2025 focusing on topics other than maths and science. Show a link and a short summary for each dataset." (results in video!)
The dataset distils reasoning chains from arXiv research papers in biology and economics. Some nice features of the dataset:
- Extracts both the logical structure AND researcher intuition from academic papers - Adopts the persona of researchers "before experiments" to capture exploratory thinking - Provides multi-short and single-long reasoning formats with token budgets - Shows 7.2% improvement on MMLU-Pro Economics when fine-tuning a 3B model
It's created using the Curator framework with plans to scale across more scientific domains and incorporate multi-modal reasoning with charts and mathematics.
I personally am very excited about datasets like this, which involve creativity in their creation and don't just rely on $$$ to produce a big dataset with little novelty.
- I developed a "Reasoning Required" dataset with a 0-4 scoring system for reasoning complexity - I used educational content from HuggingFaceFW/fineweb-edu, adding annotations for domains, reasoning types, and example questions
My approach enables a more efficient workflow: filter text with small models first, then use LLMs only on high-value content.
This significantly reduces computation costs while expanding reasoning dataset domain coverage.
1. OCR a grocery list or train a titan while sipping coffee? โ 2. Camera Snap ๐ท: Capture lifeโs chaosโyour catโs face or that weird receipt. Proof youโre a spy! 3. OCR ๐: PDFs beg for mercy as GPT-4o extracts text. 4. Image Gen ๐จ: Prompt โneon superhero meโ 5. PDF ๐: Double-page OCR Single-page sniping