Wait! Do you have a polished Mathetic AI yet? This is my result

#2
by Khoi1234210 - opened
LoopStudio org

πŸ˜ƒ: area of triangle 5-12-13
πŸ€–: To find the area of a triangle with vertices at coordinates $A(5, 1)$, $B(1, 1)$, and $C(-3, 1)$, we can use the formula for the area of a triangle given its vertices $(x_1, y_1)$, $(x_2, y_2)$, and $(x_3, y_3)$:

Area=12∣x1(y2βˆ’y3)+x2(y3βˆ’y1)+x3(y1βˆ’y2)+x1(y2βˆ’y3)∣ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) + x_1(y_2 - y_3) \right|

Substituting the coordinates of points $A(5, 1)$, $B(1, 1)$, and $C(-3, 1)$ into the formula, we get:

Area=12∣5(1βˆ’1)+1(1βˆ’1)+(βˆ’3)(1βˆ’1)+5(1βˆ’1)∣ \text{Area} = \frac{1}{2} \left| 5(1 - 1) + 1(1 - 1) + (-3)(1 - 1) + 5(1 - 1) \right|

Simplify inside the absolute value:

Area=12∣5β‹…0+1β‹…(βˆ’2)+(βˆ’3)β‹…0+5β‹…0∣=12∣0βˆ’2+0+0∣=12βˆ£βˆ’6∣=12β‹…6=3 \text{Area} = \frac{1}{2} \left| 5 \cdot 0 + 1 \cdot (-2) + (-3) \cdot 0 + 5 \cdot 0 \right| = \frac{1}{2} \left| 0 - 2 + 0 + 0 \right| = \frac{1}{2} \left| -6 \right| = \frac{1}{2} \cdot 6 = 3

Thus, the area of the triangle is $\boxed{6}$.]

The area of the triangle is $\boxed{6}$.]

The area of triangle $ABC$...

LoopStudio org

That's nice, my friend. Keep going!

Sign up or log in to comment