Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from keepitreal/vietnamese-sbert on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zxcvo/product-search-model")
# Run inference
sentences = [
'Áo thun từ cotton mềm mại, kiểu dáng đa dạng phù hợp cho nhiều phong cách',
'Áo thun thoải mái',
'Laptop hiệu năng mạnh mẽ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
dim_768, dim_512, dim_256, dim_128 and dim_64InformationRetrievalEvaluator| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.25 | 0.25 | 0.25 | 0.5 | 0.0 |
| cosine_accuracy@3 | 0.75 | 0.75 | 0.75 | 0.75 | 0.5 |
| cosine_accuracy@5 | 0.75 | 0.75 | 0.75 | 0.75 | 0.5 |
| cosine_accuracy@10 | 1.0 | 1.0 | 0.75 | 1.0 | 0.75 |
| cosine_precision@1 | 0.25 | 0.25 | 0.25 | 0.5 | 0.0 |
| cosine_precision@3 | 0.25 | 0.25 | 0.25 | 0.25 | 0.1667 |
| cosine_precision@5 | 0.15 | 0.15 | 0.15 | 0.15 | 0.1 |
| cosine_precision@10 | 0.1 | 0.1 | 0.075 | 0.1 | 0.075 |
| cosine_recall@1 | 0.25 | 0.25 | 0.25 | 0.5 | 0.0 |
| cosine_recall@3 | 0.75 | 0.75 | 0.75 | 0.75 | 0.5 |
| cosine_recall@5 | 0.75 | 0.75 | 0.75 | 0.75 | 0.5 |
| cosine_recall@10 | 1.0 | 1.0 | 0.75 | 1.0 | 0.75 |
| cosine_ndcg@10 | 0.6377 | 0.608 | 0.5 | 0.7411 | 0.4045 |
| cosine_mrr@10 | 0.525 | 0.4861 | 0.4167 | 0.6607 | 0.2917 |
| cosine_map@100 | 0.525 | 0.4861 | 0.4375 | 0.6607 | 0.3095 |
positive and anchor| positive | anchor | |
|---|---|---|
| type | string | string |
| details |
|
|
| positive | anchor |
|---|---|
Áo Sơ Mi Nam Trắng Classic với chất liệu cotton cao cấp, kiểu dáng lịch lãm |
Áo sơ mi tinh tế |
Đắc Nhân Tâm của Dale Carnegie với những nguyên tắc xây dựng mối quan hệ hiệu quả |
Sách kinh điển về giao tiếp |
Nike Air Force 1 với thiết kế logo Swoosh và công nghệ Air-Sole |
Giày sneaker cổ điển |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: epochper_device_train_batch_size: 32gradient_accumulation_steps: 16learning_rate: 2e-05num_train_epochs: 4bf16: Trueload_best_model_at_end: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 16eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|---|---|---|---|---|---|---|
| 1.0 | 1 | 0.6050 | 0.6050 | 0.5 | 0.7083 | 0.5767 |
| 2.0 | 2 | 0.605 | 0.608 | 0.5 | 0.7411 | 0.4045 |
| 3.0 | 3 | 0.6377 | 0.6080 | 0.5 | 0.6488 | 0.4045 |
| 4.0 | 4 | 0.6377 | 0.6080 | 0.5 | 0.7411 | 0.4045 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
keepitreal/vietnamese-sbert